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popularity for predicting structures from biopolymer sequences. An interesting case
is the prediction of RNA secondary structures, where well established biophysics
based methods exist. The accuracy of these classical methods is limited due to lack of
experimental parameters and certain simplifying assumptions and has seen little
improvement over the last decade. This makes RNA folding an attractive target for
machine learing and consequently several deep learning models have been proposed
in recent years. However, for ML approaches to be competitive for de-novo structure
prediction, the models must not just demonstrate good phenomenological fits, but be
Edreaty:  able to learn a (complex) biophysical model. In this contribution we discuss limitations
i Cemy. o current approaches, in particular due to biases in the training data. Furthermore, we
sttt of Botechaotay P95 propose to study capabiliies and limitations of ML models by first applying them on
Reviowa by SYNthetic data (obtained from a simplified biophysical model) that can be generated in
erome Wadspuni, arbitrary amounts and where all biases can be controlled. We assume that a deep
MoGll “’"”";:{r &fgﬂ"* learning model that performs well on these synthetic, would also perform well on real
Tanjn Uniersy, Cina - data, and vice versa. We apply this idea by testing several ML models of varying
“Correspondence:  COMplexity. Finally, we show that the best models are capable of capturing many, but
not all, properties of RNA secondary structures. Most severely, the number of
predicted base pairs scales quadratically with sequence length, even though a
Spocialty section: | S€0ONGrY Structure can only accommodate a linear number of pairs.
This atile was submited to
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Published: 114/ 2022 functions can be understood without knowledge of the full tertiary structure, relying only on
Gitation:  secondary structure, ic., the pattern of Watson-Crick type base pairs formed when the RNA strand
Famm G, Wiekaoh J Wolloger MT,  folds back onto itself. Prediction of RNA secondary structure from sequence is therefore a topic of
Badsl 5, Loren: fand Hofecker L Jongstanding interest for RNA biology and several computational approaches have been developed
e oot for this task. The most common approach is “energy directed” folding, where (in the simplest case)
o 4 the structure of lowest free energy is predicted. The corresponding energy model is typically the
Front. Botorm, 2:655422. Turner nearest-neighbor model (Turner and Mathess, 2010), which compiles free energies of small
dot 10.3380/mine2022.835422 structure motifs (loops) derived from UV melting experiments.
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Modeltype Parameters Epochs Accuracy F1 Loss MCC

BLSTM 1 Layer, 40 Neurons 43 0.667 0.594 0.609 0.166
1 Layer, 80 Neurons 27 0.664 0.589 0.612 0.168

3 Layers, 40 Neurons 38 0.676 0.609 0.604 0.207

Sliding Window Window 15 89 0.654 0.559 0.623 0.120
Window 35 94 0.659 0.559 0.620 0.118

Window 71 59 0.661 0.569 0.618 0.118

CNN Sliding Window Window 15 67 0.660 0.588 0.616 0.156
Window 35 65 0.666 0.586 0.609 0.166

Window 71 30 0.668 0.580 0.608 0.170
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Simple Feed Forward Network
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