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Abstract 

RNA molecules can populate ensembles of alternative structural conformations, but 

comprehensively mapping RNA conformational landscapes within living cells presents 

significant challenges and has, as such, so far remained elusive. Here, we generated the first 

transcriptome-scale maps of RNA secondary structure ensembles in a living cell, using 20 

Escherichia coli as a model. Our analysis uncovered features of structurally-dynamic regions, as 

well as the existence of hundreds of highly-conserved bacterial RNA structural elements. 

Conditional structure mapping revealed extensive restructuring of RNA ensembles during cold 

shock, leading to the discovery of several novel RNA thermometers in the 5′ UTRs of the cspG, 

cspI, cpxP and lpxP mRNAs. We mechanistically characterized how these thermometers switch 25 

structure in response to cold shock and revealed the cspE chaperone-mediated regulation of 

lpxP. Collectively, this work reveals a previously unappreciated complexity of RNA structural 

dynamics in living cells, and it provides a key resource to significantly accelerate the discovery 

of regulatory RNA switches. 

  30 
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Main Text 

RNA molecules are pivotal orchestrators of virtually every cellular process, functioning 

as genetic information carriers and master regulators of gene expression. These roles are 

intricately intertwined with the ability of RNA molecules to fold into complex structures. Recent 

strides in the fields of chemical biology and transcriptomics have ushered in a new era, allowing 5 

for concurrent examination of the secondary structures of thousands of transcripts in a single 

experiment1. Although the theoretical folding space of RNA molecules is vast2, and many RNAs 

have been reported to populate an ensemble of alternative base-pairing states3–8, most 

transcriptome-wide studies have focused on determining a single conformation for each 

transcript9–13, limiting the predictive power of such models and hindering our understanding of 10 

fundamental regulatory mechanisms. To overcome this limitation, a number of methods3,4,6,7,14–

17, either thermodynamics-dependent or independent18, have been devised to deconvolute RNA 

structural ensembles from chemical probing data. In a recent report we introduced DRACO4, an 

algorithm capable of deconvolving RNA structure ensembles from chemical probing data read 

out via mutational profiling14,19,20 (MaP). In MaP experiments, RNA molecules are first incubated 15 

in the presence of a chemical probe, which induces covalent modifications on the RNA at the 

level of unpaired (or structurally-flexible) nucleotides. Sites of chemical modification are then 

recorded as cDNA mutations during reverse transcription and decoded via high-throughput 

sequencing. By analyzing co-mutation patterns in sequencing reads, DRACO can estimate the 

number of conformations populating the structure ensemble for a given RNA, as well as 20 

reconstruct their structures and estimate their relative stoichiometries. Furthermore, unlike the 

majority of the available ensemble deconvolution methods, which present significant 

computational overheads, DRACO is optimized for fast computations, hence enabling 

transcriptome-wide analyses. 

In this study, we introduce a novel generalized framework for the identification of 25 

functional regulatory RNA structural switches, by combining DRACO-mediated ensemble 

deconvolution of transcriptome-wide MaP data, and prioritization of functional structures via 

automated evolutionary conservation assessment, dubbed DeConStruct, and use it to unveil, for 

the first time, the complexity of the RNA secondary structure ensemble landscape of living 

Escherichia coli cells, on the transcriptome-scale. To achieve this, we subjected exponentially 30 

growing E. coli DH5α and TOP10 cells to in vivo dimethyl sulfate (DMS) probing at 37°C. 

Ribosomal RNA-depleted samples were subjected to DMS-MaPseq analysis, yielding 

approximately 1 billion paired-end reads for each experiment. Additionally, we generated 

libraries from total RNA obtained from both in vivo probed cells and ex vivo probed RNA 
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following deproteinization, thereby facilitating the derivation of optimized folding parameters 

(Supplementary Fig. 1 and 2). Analysis of mutation distributions showed an enrichment for 

mutations on adenine (A) and cytosine (C) bases, constituting on average 56.15 ± 0.55% and 

34.15 ± 0.55% of all mutations, respectively (Fig. 1a), as expected from DMS preference for 

modifying A and C. Area under the Receiver Operator Characteristic (AUROC) curve analysis of 5 

16S and 23S rRNAs confirmed the enrichment of DMS-induced mutations on unpaired bases of 

rRNA reference structures (AUCs: 0.873-0.914). We observed a remarkable correlation in bulk 

(ensemble average) DMS reactivities between DH5α and TOP10 cells (r = 0.94, Pearson 

correlation coefficient; Fig. 1b). We achieved a minimum sequencing depth of 5,000X for 

roughly two-thirds (62-66%) of the bases in the E. coli expressed transcriptome (TPM ≥ 10; Fig. 10 

1c), a coverage threshold we had previously shown to be sufficient to ensure robust ensemble 

deconvolution by DRACO4. DRACO-mediated ensemble deconvolution further revealed that, 

among regions populating an equivalent number of conformations in both strains 

(Supplementary Table 1), encompassing 1,040,669 bases (accounting for over two-thirds of the 

analyzed bases), approximately 16.6% populated two or more conformations (Fig. 1d). 15 

Importantly, these regions included known riboswitches such as the lysC lysine riboswitch21, the 

ribB FMN riboswitch22, the thiC TPP riboswitch23, the mgtL Mg2+ sensor24, and the hisL histidine 

leader25, as well as the cspA RNA thermometer26 (Fig. 1e). Under the employed growth 

conditions, the cognate ligands for these RNA switches are expected to be abundant. 

Accordingly, the Mg2+ sensor predominantly adopted the conformation encompassing stem 20 

loops A and B (conformation B: 65.15 ± 0.45%; Fig. 1e, top inset), which is favored at high Mg2+ 

concentrations. Similarly, the histidine leader predominantly favored the attenuated 

conformation (conformation A: 70.4 ± 0.4%; Fig. 1e, bottom inset), which facilitates complete 

leader peptide translation in the presence of high histidyl-tRNA levels. Altogether, these results 

confirm that our approach is indeed suited for the identification of regulatory RNA structural 25 

switches from transcriptome-wide chemical probing data. 

To elucidate the characteristics distinguishing regions populating a single conformation 

(hereafter referred to as “1 regions”) from those exhibiting two or more conformations (hereafter 

referred to as “2+ regions”), we first examined the possibility that the separation between these 

regions might result from differences in their information content. As DRACO relies on A/C co-30 

mutation patterns to perform ensemble deconvolution, we wondered whether 2+ regions might 

be enriched in A/C bases and thus might possess higher information content, but no such 

enrichment was observed (AC% 1 regions: 49.6%, 2+ regions: 49.1%, p-value: 0.99, one-tailed 

Wilcoxon rank sum test). Subsequently, we performed partition function folding, either 
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unconstrained or constrained by bulk DMS-MaPseq reactivities and optimized folding 

parameters (see Materials and Methods; Supplementary Fig. 2), thereby deriving base-pairing 

probabilities across the entire E. coli transcriptome. We calculated median Shannon entropies, a 

measure of the structural disorder across each base of a transcript, for both 1 and 2+ regions. 

Unexpectedly, Shannon entropies were significantly higher for 1 regions than for 2+ regions in 5 

both unconstrained (p-value: 2.8e-12, Wilcoxon rank sum test; Fig. 2a) and experimentally-

constrained predictions (p-value: 5.1e-28, Wilcoxon rank sum test; Supplementary Fig. 3a). This 

result suggested that 2+ regions may predominantly occupy well-defined structural states, while 

1 regions may exhibit greater disorder and exist in numerous states with lower probability. In 

line with this hypothesis, we observed that the median probability of bases to be unpaired was 10 

significantly higher in 1 regions compared to 2+ regions in unconstrained (p-value: 2.8e-39, 

Wilcoxon rank sum test; Fig. 2b) and even more prominently in experimentally-constrained (p-

value: 2.0e-103, Wilcoxon rank sum test; Supplementary Fig. 3b) predictions. Accordingly, 

median DMS reactivities were significantly higher, and Gini indexes significantly lower, in 1 

regions as compared to 2+ regions, indicating that 1 regions tend to be less structured than 2+ 15 

regions (median reactivity p-value: 5.9e-89, Gini index p-value: 1.2e-109, Wilcoxon rank sum 

test; Fig. 2c, d). The propensity of 2+ regions towards increased structural orderliness appeared 

to be largely sequence-driven, as these regions exhibited a significantly higher GC% content (p-

value: 7.4e-15), as well as lower folding free energies than expected for sequences of same 

dinucleotide composition (p-value: 1.3e-27, Wilcoxon rank sum test; Supplementary Fig. 3c), as 20 

compared to 1 regions. Furthermore, comparative sequence analysis of 10 Gram-negative 

genomes revealed that 2+ regions are significantly more conserved than 1 regions (p-value: 

2.8e-57, Wilcoxon rank sum test; Fig. 2e).  

We next wondered whether the observed structural heterogeneity might arise from 

alternative transcript isoforms generated by alternative promoters and/or terminators27. We 25 

tested whether 2+ regions were enriched within transcripts generated from alternative 

promoters but did not observe any enrichment (expected: 10.4%, observed: 9.7%, p-value = 

0.75, one-tailed binomial test). Similarly, no enrichment was observed for genes harboring 

alternative terminators (expected: 4.26%, observed: 3.86%, p-value = 0.73, one-tailed binomial 

test). Furthermore, we ruled out the possibility that structural heterogeneity might preferentially 30 

arise as a consequence of interactions with small RNAs (sRNAs), as no significant enrichment 

was observed for experimentally-validated sRNA interactions28 (p-value: 0.86, one-tailed 

binomial test). We next investigated two additional potential confounding factors: RNA 

translation and RNA decay. To evaluate the propensity of 2+ regions towards higher structural 
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heterogeneity in absence of any contribution by cellular factors, we extracted RNA from 

exponentially growing DH5α and TOP10 cells and subjected it to in vitro refolding and DMS-

MaPseq analysis. We achieved high correlations and coverage as we did for the in-cell datasets 

(Supplementary Fig. 4a, b). Overall, in vitro refolded RNAs showed a higher fraction of 

structurally-heterogeneous regions (~32.3%, Supplementary Fig. 4c and Supplementary Table 5 

2) as compared to in vivo samples. These regions included known RNA switches such as the 

Mg2+ sensor, the molybdenum cofactor (Moco) riboswitch29, and the cspA RNA thermometer 

(Supplementary Fig. 4d-f). Notably, we observed that over two-thirds (67.3%) of the in vivo-

identified 2+ regions appeared to be structurally-heterogeneous under in vitro conditions as 

well, with 94.1% of them populating the same number of conformations in cell and in vitro, and 10 

5.9% showing increased structural heterogeneity under in vitro conditions (Supplementary Fig. 

4G and Supplementary Table 3). It is also worth noticing that, upon reanalysis of published 

ribosome profiling data30 we observed that, regions exhibiting structural heterogeneity under in 

vitro conditions but not in cell, showed significantly higher ribosome occupancy and translation 

efficiencies as compared to regions being heterogeneous both in vivo and in vitro, or only in vivo 15 

(p-values: 3.4e-8 and 9.3e-10, Wilcoxon rank sum test; Supplementary Fig. 4h). This is in line 

with previous findings13,31 showing that translation can actively unfold RNA structures in cells, 

hence suggesting that it might be partly masking the actual structural heterogeneity of cellular 

RNAs.  

We further polished this high-confidence set of 2+ regions by discarding those 20 

overlapping with experimentally-determined RNase E cleavage sites32, for which the observed 

heterogeneity might derive from the presence of decay fragments. Importantly, feature 

reanalysis for this subset did not affect the aforementioned differences between 1 and 2+ 

regions (Supplementary Fig. 5). Furthermore, as 1 regions might be polluted by putative 2+ 

regions that were not deconvolved by DRACO, we also analyzed the same set of features in 25 

high-confidence 2+ regions as compared to a random set of transcriptome regions of matching 

size and observed the exact same trends (Supplementary Fig. 6). Interestingly, the high-

confidence subset showed an even higher median % conservation with respect to both 1 

regions and random transcriptome regions (Supplementary Fig. 5e and Supplementary Fig. 6e), 

indicating that 2+ regions might be enriched for conserved RNA structural regulatory elements. 30 

To evaluate this possibility, we first identified a total of 901 structurally-heterogeneous 

regions whose DRACO-deconvolved reactivity profiles could be non-ambiguously matched 

between DH5α and TOP10 cells in vivo data and generated experimentally-informed RNA 

structure models. We next adopted the DeConStruct framework, which builds on top of the cm-
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builder method we previously introduced33,34, but significantly expanded to automatically build 

alignments of related sequences from a representative set of bacterial genomes, and validated 

it on known RNA switches (Supplementary Fig. 7). After discarding regions encompassing any 

known RNA structure element from RFAM and applying stringent alignment selection criteria 

(see Materials and Methods), we identified 226 regions (~26.5%) for which at least one of the 5 

conformations showed robust covariation support, generally regarded as a strong evidence of 

RNA structure functionality, as determined by R-scape 35 analysis. Taken together, our data 

hints at the existence of a previously unappreciated repertoire of functional regulatory RNA 

elements, likely including novel regulatory RNA switches, in bacterial RNAs. To facilitate the 

analysis and exploration of these regions, we further aggregated them into a browsable web-site 10 

(see Data and materials availability). It is worth emphasizing that, due to a number of different 

factors (namely, errors in the thermodynamic model and in the resulting structure predictions, 

the employed set of representative bacterial genomes, and the stringent alignment selection 

criteria), this set likely represents an underestimate of the actual number of conserved, 

structurally-heterogeneous regions in the E. coli transcriptome. Accordingly, approximately 40% 15 

of the regions showed at least 1 covarying base-pair. 

We next investigated how RNA secondary structure ensembles get redistributed in 

response to environmental cues. We chose cold shock as changes in RNA structure have been 

previously reported to be one of the hallmarks of cold adaptation in bacteria30,36. We therefore 

performed DMS-MaPseq analysis of exponentially growing E. coli cells shocked at 10°C for 20 20 

minutes. It has been previously shown that DMS reaction kinetics is slower at 10°C than it is at 

37°C and, therefore, reaction times need to be increased to achieve similar modification 

rates11,30. We wondered whether this might cause artifacts as, during the timeframe of DMS 

modification, which would exceed the average half-life of E. coli mRNAs upon cold shock37, the 

expressed transcriptome changes substantially. To this end, we shocked E. coli cells for 20 25 

minutes at 10°C, treated them with DMS for 2 or 30 minutes, and compared their expression 

profiles to those of DMS-untreated cells by RNA-seq (Supplementary Fig. 8a). Gene expression 

analysis showed that, while DMS-untreated cells underwent the expected transcriptome 

changes between 2 and 30 minutes (e.g., a robust upregulation of mRNAs encoding for cold-

induced cold shock proteins, CSPs) (R2 = 0.88, Pearson correlation coefficient), no change 30 

occurred for cells treated with DMS (R2 = 0.99, Pearson correlation coefficient). This data 

indicates that, despite slowed down reaction kinetics at 10°C, addition of DMS nearly 

immediately blocks all cellular processes, including transcription and RNA decay, hence 

providing an instantaneous snapshot of the RNA structurome. 
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Cold shocked cells showed extremely well correlated DMS reactivities (r = 0.95, Pearson 

correlation coefficient; Supplementary Fig. 8b), and formed a well-separated cluster with respect 

to exponentially growing cells at 37°C in PCA analysis (Supplementary Fig. 8c), indicating the 

existence of substantial structural rearrangements at 10°C. Surprisingly, DRACO-mediated 

ensemble deconvolution showed that, among regions populating an equivalent number of 5 

conformations in both strains (Supplementary Table 4), totaling 807,853 bases, approximately 

32.6% populated two or more conformations, corresponding to a nearly twofold increase as 

compared to cells grown at 37°C (Fig. 3a). When focusing solely on regions covered both at 

37°C and 10°C, encompassing 556,645 bases, we observed that over 5 times more regions 

showed increased ensemble heterogeneity, and thus populated a higher number of 10 

conformations, at 10°C, than those with reduced ensemble heterogeneity (increased 

heterogeneity at 10°C: ~15.7%, decreased heterogeneity at 10°C: ~3%; Fig. 3b and 

Supplementary Table 5). While this increase in structural diversity upon cold shock might seem 

counterintuitive to traditional thermodynamic expectations, which predict fewer structural states 

at lower temperatures, we suggest that the decrease in temperature might reduce entropy of 1 15 

regions, promoting higher structuredness and fewer, more well-defined, structural states.  

Among the fewer regions that exhibited reduced ensemble heterogeneity upon cold 

shock, we observed the well-known cspA RNA thermometer26. Previous studies proposed that 

cspA can switch between a translationally-incompetent conformation at 37°C and a 

translationally-competent conformation at 10°C26,30. However, such a model cannot explain why, 20 

at 37°C, cspA is one of the top 10% expressed proteins in the E. coli proteome38. Accordingly, 

ensemble deconvolution analysis showed that, at 37°C, the 5′ UTR of cspA populates two 

conformations, with the translation-competent conformation being the predominant one 

(conformation A: 57.8 ± 1.1%) and becoming the sole conformation upon cold shock (Fig. 3c). 

Interestingly, the two conformations of cspA could also be observed in our in vitro refolded 25 

dataset (Supplementary Fig. 5e), albeit with inverted stoichiometries (conformation A: 45.25 ± 

0.55%; conformation B: 54.75 ± 0.55%), hence indicating that the cellular environment plays a 

key role in determining conformation abundances in the ensemble. Ontology analysis of genes 

containing regions undergoing ensemble redistribution upon cold shock showed a significant 

enrichment for terms associated with response to temperature changes (Response to heat: 30 

2.5e-6, Response to cold: 3.8e-5, Cellular response to heat: 2.0e-2), stress response (p-value: 

6.2e-3), and pathways commonly modulated in response to cold shock, such as glycolysis (p-

value: 1.4e-6), fatty acid biosynthesis (p-value: 1.5e-4), lipid biosynthesis and lipid metabolism 

(p-value: 8.0e-6 and 1.1e-3), as well as protein folding and unfolding (p-values: 2.5e-3 and 9.5e-
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5), among others. Additionally, reanalysis of publicly available ribosome profiling data30 

indicated a moderate yet significant increase in translation efficiency for both genes 

encompassing regions of increased or decreased structural heterogeneity upon cold shock, 10 

minutes after the temperature shift to 10°C, as compared to 37°C (p-value: 7.9e-7, paired 

Wilcoxon rank sum test; Supplementary Fig. 8d). This increase was not observed for genes 5 

encompassing regions whose RNA ensemble heterogeneity remained unchanged. Collectively, 

these data suggest the existence of a wide catalog of undiscovered RNA thermometers in 

bacteria.  

To further explore this possibility, we selected three genes whose 5′ UTRs encompassed 

regions of increased structural heterogeneity upon cold shock, and that displayed increased 10 

translation efficiency at 10°C by ribosome profiling, as well as structural conservation, namely 

cspG, cpxP, and lpxP. The cspG mRNA encodes for a cold shock protein, which belongs to the 

same family of cspA. cspG has been previously shown to be robustly induced by cold shock at 

the transcriptional level39,40 but, to the best of our knowledge, its regulation at the translational 

level, as well as the role of its 5′ UTR as RNA thermometer, have never been reported. The 15 

cpxP mRNA encodes for a periplasmic protein involved in sensing and mediating the adaptation 

to various cellular stresses that might result in protein misfolding41,42, which is crucial for heat as 

well as cold shock responses43. The lpxP mRNA encodes for a palmitoleoyl transferase that 

catalyzes the palmitoylation of lipid A to maintain optimal outer membrane fluidity at low 

temperature44. We first tested whether the 5′ UTRs of these mRNAs played a role in regulating 20 

their translation upon cold shock by cloning these genes, with or without their 5′ UTRs, in IPTG-

inducible constructs, and by measuring their expression at 37°C versus 10°C. All three genes 

showed minimal to no expression at 37°C, but robust translation upon cold shock, while deletion 

of their 5′ UTRs abrogated their cold-mediated regulation (Fig. 3d). cspG and lpxP both showed 

increasing translation over a 2-hour time course, while cpxP expression quickly increased within 25 

the first 30 minutes of cold shock, and then rapidly decreased after 1 hour.  

We next wondered whether temperature shift alone would be sufficient to remodel the 

structure of the 5′ UTR of these genes. We therefore performed in vitro transcription of these 

mRNAs, either at 37°C or 10°C, followed by DMS-MaPseq analysis. Notably, both cspG and 

cpxP showed substantial structural rearrangements at 10°C as compared to 37°C (Fig. 3e and 30 

Supplementary Fig. 9a). These novel temperature-induced RNA structural switches were 

supported by extensive covariation (Fig. 3f and Supplementary Fig. 9b), underscoring their 

functional relevance. We further asked whether the regulation observed for the cspG 5′ UTR 

was also shared by other cold-induced members of the csp family. Particularly, cspB’s 5′ UTR 
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shares extensive sequence identity with the 5′ UTR of cspG (Supplementary Fig. 10a), while 

that of cspI diverges. cspI has been previously shown to be subjected to translational control by 

its 5′ UTR but, just like for cspG, its putative role as an RNA thermometer has never been 

investigated45. Intriguingly, all three 5′ UTRs showed a similar behavior, characterized by a large 

stem-loop structure encompassing the entire 5′ UTR, as well as part of the coding region, at 5 

37°C, which sequestered both the ribosome binding site (RBS) and the start codon, and a 

register-shifted, shorter, stem-loop structure involving the sole 5′ UTR at 10°C, which left the 

RBS and the start codon available for translation initiation (Fig. 3e and Supplementary Fig. 10b, 

c). 

Analogously to the 5′ UTRs of csp-encoding mRNAs, the 5′ UTR of lpxP showed two 10 

nearly equimolar conformations at 10°C in cell (Fig. 4a), respectively characterized by a stem-

loop structure (SL, conformation A) sequestering both RBS and start codon, which is also the 

predominant conformation at 37°C (Fig. 4b), and a register-shifted stem-loop (SLalt, 

conformation B) leaving both elements available for translation initiation. Both SL and SLalt 

showed extensive covariation support (Fig. 4c), and covariance model-guided homology search 15 

revealed the existence of homologous structures in several other Gram-negative bacteria 

(Supplementary Fig. 11). We confirmed that conformation B corresponded to the translation-

competent conformation by generating an SLalt-stabilized mutant and validated its structure by 

targeted DMS-MaPseq analysis (Fig. 4d). Stabilization of SLalt abrogated the cold-mediated 

regulation of lpxP, leading to its constitutive expression at both 37°C and 10°C (Fig. 4e). To 20 

further confirm that the observed regulation was indeed structure-mediated, rather than being 

caused by other factors such as, for example, altered mRNA decay of the SLalt-stabilized 

mutant, we adopted the PURE system46, a reconstituted E. coli in vitro transcription-translation 

system. Expression of lpxP harboring the wild type 5′ UTR could not be detected after 2 hours at 

37°C, while both the CDS-only template and the SLalt-stabilized mutant were robustly translated 25 

(Fig. 4f, g). 

Unlike the 5′ UTRs of csp-encoding mRNAs and of cpxP, however, lpxP’s 5′ UTR 

showed no structure rearrangement between 37°C and 10°C under in vitro conditions, solely 

populating the translation-incompetent conformation at both temperatures (Supplementary Fig. 

12). We hypothesized that the energy barrier between the translation-competent and 30 

translation-incompetent conformations might be so high that switch from SL to SLalt could not 

happen spontaneously on a biologically-relevant time scale, and that, as such, it might be a 

chaperone-assisted process. Interestingly, reanalysis of published cspC and cspE CLIP-seq 

data from septicemic E. coli47 showed binding of both proteins to the 5′ UTR of lpxP. Similarly, 
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RIP-seq analysis of csp proteins in Salmonella enterica serovar Typhimurium48, which we found 

to also carry a homologous structural switch (Supplementary Fig. 11), showed binding of both 

cspE and, to a lesser extent, cspC to lpxP’s 5′ UTR, hinting at a highly conserved regulatory 

mechanism. To confirm the role of csp proteins in regulating the structural switch in lpxP’s 5′ 

UTR we analyzed lpxP translation in E. coli csp knock outs from the KEIO collection49, and 5 

observed a ~50% reduction in lpxP expression in ΔcspE cells (Fig. 4h), which was not observed 

for the SLalt-stabilized mutant (Fig. 4i). 

In summary, we reported here the first transcriptome-scale map of RNA secondary 

structure ensembles in a living cell, and introduced a generalized framework, DeConStruct, that, 

by combining chemical probing-guided ensemble deconvolution and analysis of evolutionary 10 

conservation by covariation, accelerates the discovery of novel, functional regulatory RNA 

structural switches that have remained so far largely elusive. By leveraging this framework, we 

report the discovery of hundreds of candidate conserved RNA structural switches, which will 

provide an important resource for the identification of novel riboswitch classes, as well as novel 

RNA thermometers. We further experimentally characterize them, demonstrating that our 15 

approach can recover both canonical, protein-independent thermometers, such as cspG, cspI 

and cpxP, as well as chaperone-dependent ones, such as lpxP. Furthermore, as the lpxP 

thermometer represents a true on-off temperature-controlled switch, oppositely to cspA, we can 

anticipate it will have important applications in synthetic biology. 

Our data further challenges the traditional view of the cold shock response in bacteria, 20 

which has long been understood primarily in terms of RNA unfolding facilitated by the 

overexpression of cold shock proteins, or the increased structural rigidity of RNA due to lower 

temperatures. Instead, our findings suggest that the response is far more intricate, involving a 

complex redistribution of RNA structural ensembles. This indicates that cold shock induces a 

broader and more dynamic reorganization of RNA structures than previously thought, reflecting 25 

a sophisticated cellular adaptation to temperature changes. 

Albeit representing a crucial step towards a better understanding of the regulatory roles 

of RNA structures in living cells, as well as the nuanced dynamics of RNA structure ensembles 

in response to environmental cues, the current study presents a number of limitations. Firstly, 

the use of DMS limits chemical probing to the interrogation of A and C bases, which might 30 

hamper the identification of small and A/C-poor structurally-dynamic regions. This will hopefully 

be addressed in future studies, by taking advantage of recent advances in chemical probing 

protocols and reagents50,51, which allow querying all four nucleotides. Secondly, an implicit 

assumption of chemical probing-guided ensemble deconvolution analyses is that, in order to 
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identify coexisting alternative structural states for an RNA, they need to interconvert at a rate 

that is slower than the timescale of the probing experiment. Indeed, transition barrier analysis 

for the alternative conformations identified in this study showed that, in general, they tend to be 

separated by high energy barriers (median at 37°C: 8.6 kcal/mol, median at 10°C: 13.5 kcal/mol; 

Supplementary Fig. 13a), and that their interconversion requires the disruption/creation of, on 5 

average, at least 50% of the base-pairs (52-57%; Supplementary Fig. 13b), hence suggesting 

that they are unlikely to spontaneously interconvert on a biologically relevant timescale. Rather, 

their interconversion in the cell is likely a chaperone-mediated process. Accordingly, 2+ regions 

tend to be significantly enriched for binding of the chaperones cspC and cspE as compared to 1 

regions (cspC p-value: 2.2e-28, cspE p-value: 3.9e-39, one-tailed binomial test). Oppositely, as 10 

previously discussed, it is possible that “1 regions” might represent an average of short-lived 

(i.e., excited) states, interconverting at a faster rate, or that they might sample alternative 

conformations at stoichiometries too low (<5-10%) to be detected by chemical probing-guided 

ensemble deconvolution analyses.  

Nevertheless, although the structural switches identified in this study might only 15 

represent a conservative estimate of the actual RNA structural diversity in E. coli, our findings 

hold great significance both to advance our understanding of gene expression regulation, as 

well as for the development of innovative antimicrobial RNA-targeted therapeutic strategies52. 

 
  20 
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Figure legends: 

Fig. 1. In vivo mapping of Escherichia coli RNA structure ensembles. (a) Pie charts 

depicting the percentages of mutated bases across the transcriptomes of DH5α and TOP10 

cells upon DMS probing at 37°C. (b) Heat scatter-plot of raw DMS reactivities across bases with 

coverage ≥ 10,000X in the transcriptome of DH5α and TOP10 cells. Outliers (bases with 5 

mutation frequency > 0.1) were excluded. (c) Percentage of bases covered in the expressed 

transcriptome (TPM ≥ 10) of DH5α and TOP10 cells, at different sequencing depths.  (d) Pie-

chart depicting the percentages of bases in the E. coli transcriptome populating 1, 2, or 3+ 

conformations. Only bases populating the same number of conformations in DH5α and TOP10 

cells were considered. (e) Schematic representation of the E. coli genome. Regions populating 10 

2+ conformations in TOP10 (dark green), DH5α (light green), or both (grey) are indicated. 

Examples of riboswitches and RNA thermometers known to populate 2 alternative 

conformations are shown. For the mgtL Mg2+ sensor and the hisL histidine leader, reconstructed 

reactivities for the two conformations have been averaged across DH5α and TOP10 cells and 

overlaid on the known structures. Bases falling outside of the region deconvolved by DRACO 15 

are marked in pink.  

Fig. 2. Features of structurally-heterogeneous RNA regions. Box-plots depicting the 

distributions for different features across regions populating 1 or 2+ conformations in vivo. (a) 

Median Shannon entropies (from unconstrained predictions). (b) Median unpaired probabilities 

(from unconstrained predictions). (c) Median bulk (ensemble average) in vivo DMS reactivities. 20 

(d) Gini indexes calculated on bulk (ensemble average) in vivo DMS reactivities. (e) GC% 

content. (f) Median % sequence conservation calculated on a set of 10 Gram-negative bacterial 

genomes. For all plots, boxes span the 25th to the 75th percentile. The center represents the 

median. Outliers (values below the 25th percentile – 1.5 times the IQR, or above the 75th 

percentile + 1.5 times the IQR) are not shown. P-values are calculated using the Wilcoxon rank 25 

sum test. 

Fig. 3. Redistribution of RNA structure ensembles upon cold shock. (a) Pie-chart depicting 

the percentages of bases in the E. coli transcriptome populating 1, 2, or 3+ conformations after 

cold shock. Only bases populating the same number of conformations in DH5α and TOP10 cells 

are considered. (b) Pie-chart depicting the percentages of bases in the E. coli transcriptome, for 30 

transcripts expressed both at 37°C and at 10°C, for which the ensemble heterogeneity 

increases (red), decreases (green), or remains unchanged (grey) after cold shock. (c) RNA 

secondary structure ensemble analysis of the cspA RNA thermometer at 37°C (left), and after 
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cold shock (right). Reactivities are averaged across DH5α and TOP10 cells and overlaid on the 

predicted structures. Bases falling outside of the region deconvolved by DRACO are marked in 

pink. (d) Western blot analysis of cspG, cpxP and lpxP expression at 37°C and 10°C, 30 

minutes, 1 hour and 2 hours post-IPTG induction and cold shock for constructs harboring both 

the 5′ UTR and the CDS (left), or only the CDS (right). lacI is the loading control. (e) Secondary 5 

structure models of the 5′ UTR of cspG at 37°C and 10°C, with overlaid in vitro DMS reactivities, 

along with reactivity profiles and base-pairing probabilities for both conformations. Reactivities 

are averaged across two independent experiments. Error bars represent the standard deviation. 

(f) Structure models for the two conformations of the identified cspG RNA thermometer, inferred 

by phylogenetic analysis. Base-pairs showing significant covariation (as determined by R-10 

scape) are boxed in dark green (E-value < 0.05). Helices showing helix-level covariation support 

(E-value < 0.05) are boxed in light green. 

Fig. 4. Characterization of the lpxP RNA thermometer. (a) Secondary structure models for 

the two conformations of the lpxP 5′ UTR as identified via ensemble deconvolution analysis of 

cold shocked bacteria, with overlaid in vivo DMS reactivities at 10°C, along with reactivity 15 

profiles and base-pairing probabilities for both conformations. Reactivities are averaged across 

DH5α and TOP10 cells. Error bars represent the standard deviation. The two register-shifted 

stem-loops SL and SLalt are highlighted in purple. (b) Heatmap of pairwise Pearson correlation 

coefficients (PCC) of normalized DMS reactivities across the two alternative conformations of 

the lpxP 5′ UTR at 10°C, and the 37°C conformation. (c) Structure models for the SL and SLalt 20 

stem-loops, inferred by phylogenetic analysis. Base-pairs showing significant covariation (as 

determined by R-scape) are boxed in dark green (E-value < 0.05). Helices showing helix-level 

covariation support (E-value < 0.05) are boxed in light green. (d) Secondary structure of the 

SLalt-stabilized mutant, with overlaid DMS reactivities. (e) Western blot analysis of SLalt-

stabilized mutant expression at 37°C and 10°C, 30 minutes, 1 hour and 2 hours post-IPTG 25 

induction and cold shock. lacI is the loading control. (f) Western blot analysis of the full-length 

(5′ UTR + CDS), or CDS-only lpxP constructs, translated using the PURE system. (g) Western 

blot analysis of the full-length (5′ UTR + CDS) wild type and SLalt-stabilized mutant constructs, 

translated using the PURE system. (h) Western blot analysis of full-length (5′ UTR + CDS) lpxP 

expression at 10°C, 1-hour post-IPTG induction, in wild type or in CSP single knock out clones 30 

from the KEIO collection. lacI is the loading control. (I) Western blot analysis of SLalt-stabilized 

mutant expression at 10°C, 1-hour post-IPTG induction, in wild type or in cspE knock out 

bacteria. 
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