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Identification of conserved RNA regulatory 
switches in living cells using RNA secondary 
structure ensemble mapping and 
covariation analysis
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Edoardo Morandi1, Marta F. S. Cardoso    1, Billal M. Bourkia1, 
Daphne A. L. van den Homberg5, Michael T. Wolfinger    6,7,8, 
Willem A. Velema    5 & Danny Incarnato    1 

RNA molecules can populate ensembles of alternative structural 
conformations; however, comprehensively mapping RNA conformational 
landscapes within living cells presents notable challenges and has, as such, 
so far remained elusive. Here, we generate transcriptome-scale maps of RNA 
secondary structure ensembles in both Escherichia coli and human cells, 
uncovering features of structurally heterogeneous regions. By combining 
ensemble deconvolution and covariation analyses, we report the discovery 
of several bacterial RNA thermometers in the 5′ untranslated regions (UTRs) 
of the cspG, cspI, cpxP and lpxP mRNAs of Escherichia coli. We mechanistically 
characterize how these thermometers switch structure in response to 
cold shock and reveal the CspE chaperone-mediated regulation of lpxP. 
Furthermore, we introduce a method for the transcriptome-scale mapping 
of 5′ UTR structures in eukaryotes and leverage it to uncover RNA structural 
switches regulating the differential usage of open reading frames in the  
5′ UTRs of the CKS2 and TXNL4A mRNAs in HEK293 cells. Collectively, this 
work reveals the complexity of RNA structural dynamics in living cells and 
provides a resource to accelerate the discovery of regulatory RNA switches.

RNA molecules are pivotal orchestrators of virtually every cellular 
process, functioning as genetic information carriers and master 
regulators of gene expression. These roles are intricately intertwined 
with the ability of RNA molecules to fold into complex structures. 
Recent strides in the fields of chemical biology and transcriptomics 
have allowed for concurrent examination of the secondary struc-
tures of thousands of transcripts in a single experiment1. Although 
the theoretical folding space of RNA molecules is vast2 and many 
RNAs have been reported to populate an ensemble of alternative 
base-pairing states3–8, most transcriptome-wide studies have focused 

on determining a single conformation for each transcript9–13, limiting 
the predictive power of such models and hindering our understanding 
of fundamental regulatory mechanisms. To overcome this limitation, 
a number of methods3,4,6,7,14–17, either dependent on or independent 
of thermodynamics18, have been devised to deconvolute RNA struc-
tural ensembles from chemical probing data. These methods have 
revealed a growing repertoire of dynamic RNA structural ensembles, 
typically populating a small number of conformations, within both viral 
and human RNAs, with crucial regulatory roles1,19,20. The SARS-CoV-2 
frameshifting element has been reported by multiple studies to 
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of 5,000× for roughly two thirds (62–66%) of the bases in the E. coli 
expressed transcriptome (transcripts per million mapped reads ≥ 10; 
Supplementary Fig. 1e), a coverage threshold we previously showed to 
be sufficient to ensure robust ensemble deconvolution by DRACO4. It is 
important to point out that such a coverage is only theoretical. Indeed, 
as DRACO analyzes the transcriptome in sliding windows, only consider-
ing reads harboring at least two DMS-induced mutations falling within 
the window’s range, the effective number of reads used for the ensemble 
deconvolution is substantially lower than the theoretical sequencing 
depth for that window. To determine whether this sequencing depth 
would be sufficient to efficiently capture RNA secondary structure 
ensembles in our data, we selected four known riboswitches (namely, 
the ribB FMN riboswitch26, the mgtL Mg2+ sensor27, the thiM TPP ribos-
witch28 and the lysC lysine riboswitch29) located within RNAs spanning 
different expression levels. We then randomly downsampled the reads 
mapping to these RNAs and analyzed each sample with DRACO. Notably, 
DRACO was able to identify multiple conformations in nearly 100% 
of the cases with an overall effective median read depth of ~1,460×, 
with the lysine riboswitch being detected across all subsamples at an 
effective median read depth of just ~416× (Supplementary Fig. 2). To 
be conservative, we decided to set the minimum effective read depth 
threshold for DRACO to 2,000× for downstream analyses (Methods). 
DRACO-mediated ensemble deconvolution of the E. coli transcriptome 
revealed that, among regions populating an equivalent number of 
conformations in both strains (Supplementary Table 1), encompass-
ing 1,040,669 bases (accounting for over two thirds of the analyzed 
bases), approximately 16.6% populated two or more conformations 
(Fig. 1a). When also including regions populating two or more con-
formations but not necessarily the same number across both strains, 
we could recover an additional ~1.5% of structurally heterogeneous 
regions. The regions identified by DRACO included several known 
riboswitches, such as the mgtL Mg2+ sensor27 and the hisL histidine 
leader30, as well as the cspA RNA thermometer31. Under the used growth 
conditions, the cognate ligands for these RNA switches are expected 
to be abundant. Accordingly, the Mg2+ sensor predominantly adopted 
the conformation encompassing stem loops (SLs) A and B (conforma-
tion B: 65.15% ± 0.45%; Fig. 1a, top inset), which is favored at high Mg2+ 
concentrations. Similarly, the histidine leader predominantly favored 
the attenuated conformation (conformation A: 70.4% ± 0.4%; Fig. 1a, 
bottom inset), which facilitates complete leader peptide translation 
in the presence of high histidyl-tRNA levels. Altogether, these results 
confirm that our approach is indeed suited for the identification of 
regulatory RNA structural switches from transcriptome-wide chemi-
cal probing data.

To elucidate the features distinguishing regions populating a 
single conformation (hereafter referred to as ‘1 regions’) from those 
exhibiting two or more conformations (hereafter referred to as ‘2+ 
regions’), we first examined the possibility that the separation between 
these regions might result from differences in their information 
content. As DRACO relies on A/C comutation patterns to perform 
ensemble deconvolution, we wondered whether 2+ regions might be 
enriched in A/C bases and, thus, might possess higher information 
content, but no such enrichment was observed (A+C in 1 regions: 
49.4%, A+C in 2+ regions: 49.1%; P = 0.99, one-tailed Wilcoxon rank-sum 
test). Subsequently, we performed partition function folding, either 
unconstrained or constrained by bulk DMS-MaPseq reactivities and 
optimized folding parameters (Methods and Supplementary Fig. 3), 
thereby deriving base-pairing probabilities across the entire E. coli 
transcriptome. We calculated median Shannon entropies, a measure of 
the structural disorder across each base of a transcript, for both 1 and 
2+ regions. Unexpectedly, Shannon entropies were significantly higher 
for 1 regions than for 2+ regions in both unconstrained (P = 7.4 × 10−15, 
Wilcoxon rank-sum test; Fig. 1b) and experimentally constrained 
predictions (P = 5.6 × 10−32, Wilcoxon rank-sum test; Supplementary 
Fig. 4a). This result suggested that 2+ regions may predominantly 

sample a large number of conformations4,5,21–23, one of which involves 
a ~1.1-kb-long long-range interaction that appears to be essential for 
efficient ribosomal frameshifting5. The 7SK noncoding RNA that con-
trols P-TEFb, a regulator of the transcriptional elongation, populates 
an ensemble composed of a P-TEFb-bound and a P-TEFb-unbound 
conformation, whose relative stoichiometries are dependent on cell 
transcription and proliferation6. The human telomerase RNA compo-
nent adopts two alternative conformations in cells, the minor of which 
is characterized by misfolding of the CR4/5 and template/pseudoknot 
domains and, therefore, is incapable of binding to TERT8.

We previously introduced DRACO4, an algorithm capable of decon-
volving RNA structure ensembles from chemical probing data read out 
through mutational profiling14,24,25 (MaP). In MaP experiments, RNA 
molecules are first incubated in the presence of a chemical probe, which 
induces covalent modifications on the RNA at the level of unpaired 
(or structurally flexible) nucleotides. Sites of chemical modification 
are then recorded as complementary DNA (cDNA) mutations during 
reverse transcription (RT) and decoded by high-throughput sequenc-
ing. By analyzing comutation patterns in sequencing reads, DRACO 
can estimate the number of conformations populating the structure 
ensemble for a given RNA, as well as reconstruct their structures and 
estimate their relative stoichiometries. Furthermore, unlike the major-
ity of the available ensemble deconvolution methods, which present 
substantial computational overheads, DRACO is optimized for fast 
computations, thus enabling transcriptome-wide analyses.

In this study, we perform a transcriptome-scale exploration of 
RNA secondary structure ensembles in living cells and introduce a 
generalized framework for the identification of functional regulatory 
RNA structural switches, by combining DRACO-mediated ensemble 
deconvolution of transcriptome-wide MaP data and prioritization of 
functional structures using an automated evolutionary conservation 
assessment, termed DeConStruct. By mapping structurally hetero-
geneous regions across the entire Escherichia coli transcriptome and 
their dynamics in response to cold adaptation, we demonstrate that this 
framework can effectively identify RNA thermometers. Then, by devel-
oping a method for transcriptome-wide mapping of 5′ untranslated 
regions (UTRs) of eukaryotic cells, here named 5′UTR-MaP, we explore 
the secondary structure ensembles across the 5′ UTRome of human 
cells, further showing that our framework can identify RNA structural 
switches regulating open reading frame (ORF) usage. Altogether, our 
study unveils the complexity of the RNA secondary structure ensemble 
landscape of living cells.

Results
Transcriptome-wide mapping of bacterial RNA structural 
ensembles identifies general features of structurally 
heterogeneous RNAs
To comprehensively profile RNA structural ensembles across the E. coli 
transcriptome, we performed in vivo dimethyl sulfate (DMS) probing 
on exponentially growing DH5α and TOP10 cells at 37 °C. Ribosomal 
RNA (rRNA)-depleted samples were subjected to DMS-MaPseq analysis, 
yielding approximately 1 billion paired-end reads for each experiment. 
Additionally, we generated libraries from total RNA obtained from both 
in vivo probed cells and ex vivo probed RNA following deproteinization, 
thereby facilitating the derivation of optimized folding parameters. 
Analysis of mutation distributions showed an enrichment for mutations 
on A and C, constituting on average 56.15% ± 0.55% and 34.15% ± 0.55% 
of all mutations, respectively (Supplementary Fig. 1a), as expected 
from DMS preference for modifying A and C. Area under the receiver 
operator characteristic curve analysis of 16S and 23S rRNAs confirmed 
the enrichment of DMS-induced mutations on unpaired bases of rRNA 
reference structures (area under the curve: 0.873–0.914; Supplemen-
tary Fig. 1b). DH5α and TOP10 bulk (ensemble average) DMS reactivi-
ties were highly correlated (r = 0.94, Pearson correlation coefficient; 
Supplementary Fig. 1c,d). We achieved a minimum sequencing depth 
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Fig. 1 | In vivo mapping of E. coli RNA structure ensembles. a, Schematic 
representation of the E. coli genome. Regions populating two or more 
conformations in TOP10 (dark green), DH5α (light green) or both (gray) are 
indicated. Examples of riboswitches and RNA thermometers known to populate 
two alternative conformations are shown. For the mgtL Mg2+ sensor and the 
hisL histidine leader, reconstructed reactivities for the two conformations were 
averaged across DH5α and TOP10 cells and overlaid on the known structures. 
Bases falling outside of the region deconvolved by DRACO are marked in pink. 
Inset, pie chart depicting the percentages of bases in the E. coli transcriptome 
populating one, two or three or more conformations. Only bases populating 
the same number of conformations in DH5α and TOP10 cells were considered. 
b, Distribution of median Shannon entropies (from unconstrained predictions) 

in 1 versus 2+ regions. c, Distribution of median unpaired probabilities (from 
unconstrained predictions) in 1 versus 2+ regions. d, Distribution of median bulk 
(ensemble average) in vivo DMS reactivities in 1 versus 2+ regions. e, Distribution 
of Gini indices calculated on bulk (ensemble average) in vivo DMS reactivities  
in 1 versus 2+ regions. f, Distribution of G+C content in 1 versus 2+ regions.  
g, Distribution of median percentage sequence conservation, calculated on a 
set of ten Gram-negative bacterial genomes, in 1 versus 2+ regions. For all box 
plots, boxes span the 25th to the 75th percentile. The center represents the 
median. Outliers (values below the 25th percentile − 1.5× the IQR or above the 
75th percentile + 1.5× the IQR) are not shown. P values were calculated using a 
two-sided Wilcoxon rank-sum test.
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occupy well-defined structural states, while 1 regions may exhibit 
greater disorder and exist in numerous states with lower probabil-
ity. In line with this hypothesis, we observed that the median prob-
ability of bases to be unpaired was significantly higher in 1 regions 
compared to 2+ regions in unconstrained (P = 9.8 × 10−44, Wilcoxon 
rank-sum test; Fig. 1c) and even more prominently in experimentally 
constrained (P = 1.4 × 10−117, Wilcoxon rank-sum test; Supplementary 
Fig. 4b) predictions. Accordingly, median DMS reactivities were sig-
nificantly higher and Gini indices were significantly lower in 1 regions 
as compared to 2+ regions, indicating that 1 regions tend to be less 
structured than 2+ regions (median reactivity P = 3.8 × 10−105, Gini index 
P = 8.4 × 10−133, Wilcoxon rank-sum test; Fig. 1d,e). The propensity of 
2+ regions toward increased structural orderliness appeared to be 
at least partly sequence driven, as these regions exhibited a signifi-
cantly higher G+C content (P = 1.5 × 10−17; Fig. 1f), as well as lower fold-
ing free energies than expected for sequences of same dinucleotide 
composition (P = 5.4 × 10−13, Wilcoxon rank-sum test; Supplementary 
Fig. 4c), as compared to 1 regions. Furthermore, comparative sequence 
analysis of ten Gram-negative genomes revealed that 2+ regions are 
significantly more conserved than 1 regions (P = 1.1 × 10−50, Wilcoxon 
rank-sum test; Fig. 1g).

We next wondered whether the observed structural heteroge-
neity of 2+ regions might arise from alternative transcript isoforms 
generated by alternative promoters and/or terminators32. We tested 
whether 2+ regions were enriched within transcripts generated from 
alternative promoters but did not observe any enrichment (expected: 
10.9%, observed: 9.7%; P = 0.87, one-tailed binomial test). Similarly, no 
enrichment was observed for genes harboring alternative terminators 
(expected: 4.3%, observed: 3.8%; P = 0.75, one-tailed binomial test). 
Furthermore, we ruled out the possibility that structural heterogeneity 
of 2+ regions might preferentially arise as a consequence of interactions 
with small RNAs (sRNAs), as no significant enrichment was observed 
for experimentally validated sRNA interactions33 (P = 0.91, one-tailed 
binomial test). We next investigated two additional potential confound-
ing factors: RNA translation and RNA decay. To evaluate the propensity 
of 2+ regions toward higher structural heterogeneity in absence of any 
contribution by cellular factors, we extracted RNA from exponentially 
growing DH5α and TOP10 cells and subjected it to in vitro refolding and 
DMS-MaPseq analysis. We achieved high correlations and coverage 
as we did for the in-cell datasets (Supplementary Fig. 5a,b). Overall, 
in vitro refolded RNAs showed a higher fraction of 2+ regions (~32.3%; 
Supplementary Fig. 5c and Supplementary Table 2) as compared to 
in vivo samples. These regions included known RNA switches such as 
the Mg2+ sensor, the molybdenum cofactor riboswitch34 and the cspA 
RNA thermometer (Supplementary Fig. 5d–f). Notably, when focusing 
on bases populating a consistent number of conformations across both 
strains, common to both in vivo and in vitro datasets, we observed 
that over two thirds (67.3%) of those encompassing in vivo-identified 
2+ regions appeared to be structurally heterogeneous under in vitro 
conditions as well, with 94.1% of them populating the same number of 
conformations in cell and in vitro and 5.9% showing increased structural 
heterogeneity under in vitro conditions (Supplementary Fig. 5g and 
Supplementary Table 3). It is also worth noticing that, upon reanaly-
sis of published ribosome profiling data35, we observed that regions 
exhibiting structural heterogeneity (2+) under in vitro conditions 
but not in cell showed significantly higher ribosome occupancy and 
translation efficiencies as compared to regions being heterogeneous 
both in vivo and in vitro, or only in vivo (P = 5.1 × 10−10 and 4.8 × 10−11, 
Wilcoxon rank-sum test; Supplementary Fig. 5h). This is in line with 
previous findings13,36 showing that translation can actively unfold RNA 
structures in cells, thus suggesting that it might be partly masking the 
actual structural heterogeneity of cellular RNAs.

We further polished this high-confidence set of 2+ regions by 
discarding those overlapping with experimentally determined RNase 
E cleavage sites37, for which the observed heterogeneity might derive 

from the presence of decay fragments. Importantly, feature reanalysis 
for this subset did not affect the aforementioned differences between 1 
and 2+ regions (Supplementary Fig. 6). Furthermore, as 1 regions were 
on average ~3-fold less covered than 2+ regions and, as such, might be 
polluted by putative 2+ regions that were not deconvolved by DRACO, 
we also analyzed the same set of features in 2+ regions as compared to 
a random set of transcriptome regions of matching size and observed 
the exact same trends (Supplementary Fig. 7).

A generalized framework based on automatic covariation 
analysis accelerates the discovery of RNA regulatory switches
Sequence analysis of 2+ regions showed that they possess a substan-
tially higher median percentage conservation, as compared to both 1 
regions and random transcriptome regions (Fig. 1g and Supplemen-
tary Fig. 7f), thus suggesting that 2+ regions might be enriched for 
conserved RNA structural regulatory elements.

To evaluate this possibility, we implemented a framework, dubbed 
DeConStruct framework (Supplementary Fig. 8), which builds on top 
of the cm-builder method we previously introduced22,38 but is greatly 
expanded to automatically build alignments of related sequences from 
a representative set of bacterial genomes, and validated it on known 
RNA switches (Supplementary Fig. 9). Firstly, we identified a total of 
901 structurally heterogeneous regions whose DRACO-deconvolved 
reactivity profiles could be nonambiguously matched between DH5α 
and TOP10 cell in vivo data and generated experimentally informed 
RNA structure models. After discarding regions encompassing any 
known RNA structure element from RFAM and applying stringent 
alignment selection criteria (Methods), our framework identified 226 
regions (~26.5%) for which at least one of the conformations showed 
robust covariation support, generally regarded as strong evidence 
of RNA structure functionality, as determined by R-scape39 analysis. 
Taken together, our data hint at the existence of a previously unap-
preciated repertoire of functional regulatory RNA elements, likely 
including regulatory RNA switches, in bacterial RNAs. To facilitate the 
analysis and exploration of these regions, we further aggregated them 
into a browsable website (https://www.incarnatolab.com/datasets/
Ensembles_Borovska_2025/). It is worth emphasizing that, because 
of a number of different factors (namely, inaccuracies in the thermo-
dynamic model and in the resulting structure predictions, the used 
set of representative bacterial genomes and the stringent alignment 
selection criteria), this set likely represents an underestimate of the 
actual number of conserved, structurally heterogeneous regions in the 
E. coli transcriptome. Accordingly, approximately 40% of the regions 
showed at least one covarying base pair.

We next sought to exploit our framework to identify conserved 
bacterial RNA thermometers. We focused on cold shock response, 
as changes in RNA structure have been previously reported to be one 
of the hallmarks of cold adaptation in bacteria35,40. We therefore per-
formed DMS-MaPseq analysis of exponentially growing E. coli cells 
shocked at 10 °C for 20 min. It has been previously shown that DMS 
reaction kinetics is slower at 10 °C than at 37 °C and, therefore, reaction 
times need to be increased to achieve similar modification rates11,35. We 
wondered whether this might cause artifacts as, during the timeframe 
of DMS modification, which would exceed the average half-life of E. coli 
mRNAs upon cold shock41, the expressed transcriptome changes sub-
stantially. To this end, we shocked E. coli cells for 20 min at 10 °C, treated 
them with DMS for 2 or 30 min and compared their expression profiles 
to those of DMS-untreated cells by RNA-seq (Supplementary Fig. 10a). 
Gene expression analysis showed that, while DMS-untreated cells 
underwent the expected transcriptome changes between 2 and 30 min 
(for example, a robust upregulation of mRNAs encoding cold-induced 
cold shock proteins, Csps; R2 = 0.88, Pearson correlation coefficient), 
no change occurred for cells treated with DMS (R2 = 0.99, Pearson cor-
relation coefficient). These data indicate that, despite slowed down 
reaction kinetics at 10 °C, addition of DMS nearly immediately blocks 
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all cellular processes, including transcription and RNA decay, thus 
providing an instantaneous snapshot of the RNA structurome.

Cold-shocked cells showed well-correlated DMS reactivities 
(r = 0.95, Pearson correlation coefficient; Supplementary Fig. 10b) 
and formed a well-separated cluster with respect to exponentially 
growing cells at 37 °C in principal component analysis (Supplementary 
Fig. 10c), indicating the existence of substantial structural rearrange-
ments at 10 °C. Surprisingly, DRACO-mediated ensemble deconvolu-
tion showed that, among regions populating an equivalent number 
of conformations in both strains (Supplementary Table 4), totaling 
807,853 bases, approximately 32.6% populated two or more conforma-
tions, corresponding to a nearly twofold increase as compared to cells 
grown at 37 °C (Fig. 2a). When focusing solely on regions covered both 
at 37 °C and 10 °C, we observed that over fivefold more regions showed 
increased ensemble heterogeneity and, thus, populated a higher 
number of conformations at 10 °C than those with reduced ensemble 
heterogeneity (increased heterogeneity at 10 °C: ~15.7%, decreased het-
erogeneity at 10 °C: ~3%; Fig. 2b and Supplementary Table 5). While this 
increase in structural diversity upon cold shock might seem counterin-
tuitive to traditional thermodynamic expectations, which predict fewer 
structural states at lower temperatures, we suggest that the decrease in 
temperature might reduce the entropy of 1 regions, promoting higher 
structuredness and fewer, more well-defined structural states.

Among the fewer regions that exhibited reduced ensemble hetero-
geneity upon cold shock, we observed the well-known cspA RNA ther-
mometer31. Previous studies proposed that cspA can switch between a 
translationally incompetent conformation at 37 °C and a translationally 
competent conformation at 10 °C (refs. 31,35). However, such a model 

cannot explain why, at 37 °C, CspA is among the top 10% expressed 
proteins in the E. coli proteome42. Accordingly, ensemble deconvo-
lution analysis showed that, at 37 °C, the 5′ UTR of cspA populates 
two conformations, with the translationally competent conforma-
tion being the predominant one (conformation A: 57.8% ± 1.1%) and 
becoming the sole conformation upon cold shock (Fig. 2c). Interest-
ingly, the two conformations of cspA could also be observed in our 
in vitro refolded dataset (Supplementary Fig. 5f), albeit with inverted 
stoichiometries (conformation A: 45.25% ± 0.55%, conformation B: 
54.75% ± 0.55%), thus indicating that the cellular environment has a 
key role in determining conformation abundances in the ensemble. 
Ontology analysis of genes containing regions undergoing ensemble 
redistribution upon cold shock showed a significant enrichment for 
terms associated with response to temperature changes (response 
to heat P = 2.3 × 10−5, response to cold P = 3.7 × 10−4), stress response 
(P = 1.2 × 10−3), and pathways commonly modulated in response to 
cold shock, such as glycolysis (P = 6.2 × 10−7), fatty acid biosynthesis 
(P = 1.5 × 10−4), lipid biosynthesis and lipid metabolism (P = 4.1 × 10−6 
and 3.4 × 10−3) and protein folding and unfolding (P = 7.7 × 10−3 and 
9.2 × 10−5). Additionally, reanalysis of publicly available ribosome profil-
ing data35 indicated a moderate yet significant increase in translation 
efficiency for both genes encompassing regions of differential struc-
tural heterogeneity upon cold shock, 10 min after the temperature shift 
to 10 °C, as compared to 37 °C (P = 1.1 × 10−5, paired Wilcoxon rank-sum 
test; Supplementary Fig. 10d). This increase was not observed for genes 
encompassing regions whose RNA ensemble heterogeneity remained 
unchanged. Collectively, these data suggest the existence of a wide 
catalog of undiscovered RNA thermometers in bacteria.
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Fig. 2 | Redistribution of RNA structure ensembles upon cold shock.  
a, Pie chart depicting the percentages of bases in the E. coli transcriptome 
populating one, two or three or more conformations after cold shock. Only 
bases populating the same number of conformations in DH5α and TOP10 cells 
are considered. b, Pie chart depicting the percentages of bases in the E. coli 
transcriptome, for transcripts expressed both at 37 °C and at 10 °C, for which the 
ensemble heterogeneity increases (red), decreases (blue) or remains unchanged 
(gray) after cold shock. c, RNA secondary structure ensemble analysis of the 

cspA RNA thermometer at 37 °C (left) and after cold shock (right). Reactivities 
were averaged across DH5α and TOP10 cells and overlaid on the predicted 
structures. Bases falling outside of the region deconvolved by DRACO are 
marked in pink. d, Western blot analysis of FLAG-tagged CspG, CpxP and LpxP 
expression at 37 °C and 10 °C, 30 min, 1 h and 2 h after IPTG induction and cold 
shock for constructs harboring both the 5′ UTR and the CDS (left) or only the 
CDS (right). LacI was used as the loading control. Analysis is representative of 
two independent biological replicates.
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To further explore this possibility, we selected three genes whose 
5′ UTRs encompassed regions of increased structural heterogeneity 
upon cold shock and that displayed increased translation efficiency 
at 10 °C by ribosome profiling, as well as structural conservation, as 
revealed by our DeConStruct framework (namely, cspG, cpxP and 
lpxP). The cspG mRNA encodes for a Csp that belongs to the same 
family of CspA. cspG was previously shown to be robustly induced by 
cold shock at the transcriptional level43,44; however, to the best of our  
knowledge, its regulation at the translational level and the role of  
its 5′ UTR as an RNA thermometer, have not been reported. The cpxP 
mRNA encodes a periplasmic protein involved in sensing and medi-
ating the adaptation to various cellular stresses that might result 
in protein misfolding45,46, which is crucial for responses to heat and  
cold shock47. The lpxP mRNA encodes a palmitoleoyl transferase 
that catalyzes the palmitoylation of lipid A to maintain optimal outer 
membrane fluidity at low temperature48. We first tested whether the  
5′ UTRs of these mRNAs had a role in regulating their translation  
upon cold shock by cloning these genes, with or without their 5′ UTRs, 
in IPTG-inducible constructs and by measuring their expression at 
37 °C versus 10 °C. All three genes showed minimal to no expression 
at 37 °C but robust translation upon cold shock, while deletion of 
their 5′ UTRs abrogated their cold-mediated regulation (Fig. 2d). cspG  
and lpxP both showed increasing translation over a 2-h time course, 
while cpxP expression quickly increased within the first 30 min of cold 
shock and then rapidly decreased after 1 h.

We next wondered whether temperature shift alone would be 
sufficient to remodel the structure of the 5′ UTR of these genes. We, 
therefore, performed in vitro transcription of these mRNAs, either at 
37 °C or 10 °C, followed by DMS-MaPseq analysis. Notably, both cspG 
and cpxP showed substantial structural rearrangements at 10 °C as 
compared to 37 °C (Extended Data Fig. 1a and Supplementary Fig. 11a). 
These temperature-induced RNA structural switches were supported 
by extensive covariation (Extended Data Fig. 1b and Supplementary 
Fig. 11b), underscoring their functional relevance. We further asked 
whether the regulation observed for the 5′ UTR of cspG was also shared 
by other cold-induced members of the Csp family. In particular, the 
5′ UTR of cspB shares extensive sequence identity with the 5′ UTR of 
cspG (Supplementary Fig. 12a) while that of cspI diverges. cspI was 
previously shown to be subjected to translational control by its 5′ UTR 
but, just like for cspG, its putative role as an RNA thermometer was not 
investigated49. Intriguingly, all three 5′ UTRs showed a similar behavior, 
characterized by a large SL structure encompassing the entire 5′ UTR 
and part of the coding region, at 37 °C, which sequestered both the 
ribosome-binding site (RBS) and the start codon, and a register-shifted, 
shorter, SL structure involving the sole 5′ UTR at 10 °C, which left the 
RBS and the start codon available for translation initiation (Extended 
Data Fig. 1a and Supplementary Fig. 12b,c).

Analogously to the 5′ UTRs of Csp-encoding mRNAs, the 5′ UTR 
of lpxP showed two nearly equimolar conformations at 10 °C in cell 
(Fig. 3a), respectively characterized by an SL structure (conformation A)  
sequestering both RBS and start codon, which is also the single pre-
dominant conformation at 37 °C (Fig. 3b), and a register-shifted SL  
(SLalt, conformation B) leaving both elements available for transla-
tion initiation. Both SL and SLalt showed extensive covariation sup-
port (Fig. 3c) and a covariance model (CM)-guided homology search 
revealed the existence of homologous structures in several other 
Gram-negative bacteria (Supplementary Fig. 13). We confirmed that 
conformation B corresponded to the translation-competent conforma-
tion by generating an SLalt-stabilized mutant and validated its structure 
by targeted DMS-MaPseq analysis (Supplementary Fig. 14a). Stabiliza-
tion of SLalt abrogated the cold-mediated regulation of lpxP, leading to 
its constitutive expression at both 37 °C and 10 °C (Fig. 3d). To further 
confirm that the observed regulation was indeed structure medi-
ated, rather than being caused by other factors such as altered mRNA 
decay of the SLalt-stabilized mutant, we adopted the PURE system50,  

a reconstituted E. coli in vitro transcription–translation system. Expres-
sion of lpxP harboring the wild-type 5′ UTR could not be detected after 
2 h at 37 °C, while the template with the coding sequence (CDS) only 
and the SLalt-stabilized mutant were robustly translated (Supplemen-
tary Fig. 14b,c).

Unlike the 5′ UTRs of Csp-encoding mRNAs and of cpxP, however, 
the lpxP 5′ UTR showed no structure rearrangement between 37 °C 
and 10 °C under in vitro conditions, solely populating the transla-
tionally incompetent conformation at both temperatures (Supple-
mentary Fig. 15). We hypothesized that the energy barrier between 
the translationally competent and translationally incompetent con-
formations might be so high that a switch from SL to SLalt could not 
happen spontaneously on a biologically relevant timescale; as such, 
it might be a chaperone-assisted process. Interestingly, reanalysis 
of published CspC and CspE CLIP-seq data from septicemic E. coli51 
showed binding of both proteins to the 5′ UTR of lpxP. Similarly, RNA 
immunoprecipitation sequencing analysis of Csp proteins in Salmo-
nella enterica serovar Typhimurium52, which we found to also carry 
a homologous structural switch (Supplementary Fig. 13), showed 
binding of CspE and, to a lesser extent, CspC to the 5′ UTR of lpxP, 
hinting at a highly conserved regulatory mechanism. To confirm the 
role of Csp proteins in regulating the structural switch in the lpxP  
5′ UTR, we analyzed lpxP translation in E. coli Csp knockouts from the 
KEIO collection53 and observed a ~ 50% reduction in LpxP expression 
in ΔCspE cells (Fig. 3e), which was not observed for the SLalt-stabilized 
mutant (Supplementary Fig. 14d).

Transcriptome-scale ensemble deconvolution analysis of 
the human 5′UTRome identifies RNA structural switches 
regulating ORF usage
Armed with this new powerful framework, we next adopted it to iden-
tify regulatory RNA structural switches regulating the translation of 
human mRNAs. We decided to focus on 5′ UTRs, which are known to 
harbor a wide repertoire of translation regulatory elements54. How-
ever, as the human transcriptome is much larger than that of E. coli 
and ensemble deconvolution analysis is highly demanding in terms of 
sequencing depths, we could not resort to standard transcriptome-wide 
DMS-MaPseq analysis. Furthermore, because of their high G+C content 
and being positioned at the 5′-most end of mRNAs, 5′ UTRs tend to be 
underrepresented in traditional RNA-seq-like libraries. To address 
this, we sought to develop a method, here dubbed 5′UTR-MaP, which 
combines chemical probing and MaP analysis with the selective enrich-
ment of 7-methylguanosine-capped RNA fragments (Extended Data 
Fig. 2). We applied 5′UTR-MaP to HEK293 cells treated with DMS in vivo 
at 37 °C, generating ~800 million reads across two biological replicate 
experiments, and achieved robust enrichment of mRNA 5′ ends (Fig. 4a 
and Supplementary Fig. 16a) as compared to standard DMS-MaPseq25. 
We further confirmed that 5′UTR-MaP can be also adopted for the 
analysis of SHAPE-treated samples, by generating libraries in HEK293 
treated with 2-aminopyridine-3-carboxylic acid imidazolide55 (2A3) 
(Supplementary Fig. 16b). 5′UTR-MaP successfully captured known 
RNA structure elements within human 5′UTRs56,57 (Fig. 4b and Sup-
plementary Fig. 16c). 5′UTR-MaP analysis of DMS-treated HEK293 cells 
exhibited high reproducibility (r = 0.94, Pearson correlation coefficient; 
Supplementary Fig. 16d) and successfully captured the enrichment  
for A/C mutations expected for DMS-treated RNAs (A: 41.25% ± 0.25%, 
C: 42.65% ± 0.95%; Supplementary Fig. 16e).

DRACO-mediated ensemble deconvolution of the HEK293  
5′ UTRome revealed that, among regions populating an equivalent 
number of conformations in both replicate experiments (Supple-
mentary Table 6), encompassing 148,461 bases across 2,240 5′ UTRs, 
approximately 7% populated two or more conformations, encompass-
ing 183 5′ UTRs (Fig. 4c). When also including regions populating two 
or more conformations but not necessarily the same number across 
both experiments, we could recover an additional ~1% of structurally 
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heterogeneous regions. As observed for E. coli RNAs, 2+ regions of 
the HEK293 5′ UTRome showed significantly lower median reactivity 
and a higher Gini index as compared to 1 regions (median reactiv-
ity P = 5.0 × 10−3, Gini index P = 8.3 × 10−24, Wilcoxon rank-sum test; 
Fig. 4d,e). A similar trend was also observed for Shannon entropies and 
G+C content, although the differences were not significant (Shannon 
entropy P = 0.09, G+C P = 0.14, Wilcoxon rank-sum test). Previous stud-
ies showed that 5′ UTR RNA structures can be actively unfolded by a 
number of adenosine triphosphate (ATP)-dependent RNA helicases54,58, 
suggesting that our survey of structurally heterogeneous regions might 
represent an underestimate of the actual number of putative RNA 
structural switches in human 5′ UTRs. To investigate this possibility, 
we generated two replicate 5′UTR-MaP experiments in ATP-depleted 
HEK293 cells (Supplementary Fig. 17a). As expected, ATP depletion 

resulted in an overall increase in 5′ UTR structuredness as compared 
to standard culture conditions, as demonstrated by a robust reduction 
in median reactivity and increase in Gini index for 5′ UTRs upon ATP 
depletion (Supplementary Fig. 17b,c). Furthermore, DRACO-mediated 
ensemble deconvolution revealed a robust increase in RNA structural 
heterogeneity in ATP-depleted cells as compared to cells grown under 
standard conditions. Of the regions populating an equivalent num-
ber of conformations in both replicate experiments in ATP-depleted 
cells (Supplementary Table 7), encompassing 153,283 bases across 
2,546 5′ UTRs, approximately 17.3% populated two or more conforma-
tions, encompassing 511 5′ UTRs (Fig. 4f). When also including regions 
populating two or more conformations but not necessarily the same 
number across both experiments, we could recover an additional 
~3.4% of structurally heterogeneous regions. When focusing solely on 
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Fig. 3 | Characterization of the lpxP RNA thermometer. a, Secondary structure 
models for the two conformations of the lpxP 5′ UTR as identified by ensemble 
deconvolution analysis of cold-shocked bacteria, with overlaid in vivo DMS 
reactivities at 10 °C, along with reactivity profiles and base-pairing probabilities 
for both conformations. Reactivities are averaged across DH5α and TOP10 cells. 
The register-shifted SL and SLalt are highlighted in purple. Insets, scatter plot 
depicting the correlation of base reactivities for the deconvolved conformations 
across DH5α and TOP10 cells. b, Heat map of pairwise Pearson correlation 
coefficients (PCC) of normalized DMS reactivities across the two alternative 
conformations of the lpxP 5′ UTR at 10 °C and the sole 37 °C conformation.  

c, Structure models for SL and SLalt inferred by phylogenetic analysis. Base pairs 
showing significant covariation (as determined by R-scape) are boxed in dark 
green (E < 0.05). Helices showing helix-level covariation support (E < 0.05) are 
boxed in light green. d, Western blot analysis of SLalt-stabilized mutant expression 
at 37 °C and 10 °C, 30 min, 1 h and 2 h after IPTG induction and cold shock. LacI 
was used as the loading control. Analysis is representative of two independent 
biological replicates. e, Western blot analysis of full-length (5′ UTR + CDS) FLAG-
tagged LpxP expression at 10 °C, 1 h after IPTG induction, in wild-type or in Csp 
single-knockout clones from the KEIO collection. LacI was used as the loading 
control. Analysis is representative of two independent biological replicates.
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regions covered both under standard and ATP-depleted conditions,  
we observed that over 10.5-fold more regions showed increased 
ensemble heterogeneity and, thus, populated a higher number of 
conformations upon ATP depletion than those with reduced ensemble 
heterogeneity (increased heterogeneity upon ATP depletion: ~14.7%, 
decreased heterogeneity upon ATP depletion: ~1.4%; Fig. 4g and Sup-
plementary Table 8).

We next investigated whether differences in 5′ UTR structural 
heterogeneity were associated with different levels of translation. 
Reanalysis of published ribosome profiling data59 revealed that 5′ UTRs 
populating a single conformation were significantly more efficiently 
translated as compared to those populating multiple conformations 
under standard conditions (P = 5.5 × 10−3, Wilcoxon rank-sum test) but 
slightly less efficiently translated than those whose heterogeneity 

increased upon ATP depletion (P = 1.2 × 10−2, Wilcoxon rank-sum test; 
Fig. 4h). We wondered whether structurally heterogeneous 5′ UTRs 
might contain regulatory elements that would result into decreased 
translation efficiencies. Some of the better-characterized 5′ UTR ele-
ments that can lead to translation repression are G-quadruplexes60–62 
(G4s) and upstream ORFs63–65 (uORFs). While G4-forming regions 
from publicly available rG4-seq datasets66,67 did not show any signifi-
cant enrichment within 2+ regions under standard conditions, we did 
observe a significantly higher density of NTG triplets as compared to 
both 1 regions (P = 3.7 × 10−3, Wilcoxon rank-sum test) and 2+ regions 
(P = 3.7 × 10−2, Wilcoxon rank-sum test) under ATP-depleted conditions 
(Fig. 4i), suggesting that coexisting alternative RNA secondary struc-
tures within these 5′ UTRs might have a role in regulating the usage of 
uORFs versus the main ORF.
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Fig. 4 | In vivo mapping of HEK293 5′ UTR RNA structure ensembles. a, Heat 
map depicting the enrichment of reads at the 5′ end of transcripts in 5′UTR-MaP 
experiments, as compared to standard DMS-MaPseq25. TES, transcription end 
site. b, Known structure of SL1 in the 5′ UTR of the ODC1 mRNA, as captured by 
5′UTR-MaP57. c, Pie chart depicting the percentages of bases in the 5′ UTRome 
of HEK293 cultured under standard conditions, populating one, two or three or 
more conformations. Only bases populating the same number of conformations 
in both replicate experiments were considered. d, Distribution of median bulk 
(ensemble average) in vivo DMS reactivities in 1 versus 2+ regions. e, Distribution 
of Gini indices calculated on bulk (ensemble average) in vivo DMS reactivities  
in 1 versus 2+ regions. f, Pie chart depicting the percentages of bases in the  
5′ UTRome of HEK293 upon ATP depletion, populating one, two or three or more 
conformations. Only bases populating the same number of conformations 

in both replicate experiments were considered. g, Pie chart depicting the 
percentages of bases in the 5′ UTRome of HEK293, for transcripts expressed 
under both standard and ATP-depleted conditions, for which the ensemble 
heterogeneity increases (red), decreases (blue) or remains unchanged (gray) 
upon ATP depletion. h, Distribution of translation efficiencies for genes whose 
5′ UTRs encompass regions always populating 1 or 2+ conformations under 
standard or ATP-depleted conditions. NS< not significant. i, Distribution of 
densities of NTG triplets within regions populating 1 or 2+ conformations under 
standard or ATP-depleted conditions. For all box plots, boxes span the 25th to 
the 75th percentile. The center represents the median. Outliers (values below the 
25th percentile − 1.5× the IQR or above the 75th percentile + 1.5× the IQR) are not 
shown. P values were calculated using a two-sided Wilcoxon rank-sum test.
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To investigate this hypothesis, after generating DMS-MaPseq data 
for human rRNAs from total RNA and using it to derive optimized fold-
ing parameters as previously done for E. coli (Supplementary Fig. 18), 
we modeled experimentally informed RNA structures of 2+ regions 
under standard conditions. Once again, we leveraged our DeConStruct 
framework to prioritize putative functional RNA switches, encompass-
ing 5′ UTR regions with a high density of NTG triplets. To facilitate the 
extraction of candidate homologous sequences from related genomes, 
we modified the framework to automatically build a database of related 
sequences by directly extracting (and degapping) the relevant portions 
from precomputed multiple genome alignments (that is, the multi-
z100way alignment of 100 species). While human 5′ UTR structures 
typically showed fewer covarying pairs than bacterial RNAs, likely 
because of the lower number of sequences in the analyzed alignments, 
they often showed helix-level covariations. We selected 5′ UTRs from 
two mRNAs: CDC28 protein kinase regulatory subunit 2 (CKS2) and 
thioredoxin-like 4A (TXNL4A). Both mRNAs formed two alternative con-
formations, confirmed by targeted DMS-MaPseq analysis (Fig. 5a and 
Extended Data Fig. 3a), for which the DeConStruct framework could 
identify notable covariation support to different extents (Fig. 5b and 
Extended Data Fig. 3b). For CKS2, we could nonambiguously pinpoint 
the uORF start codon by reanalyzing publicly available ribosome pro-
filing data from lactimidomycin-treated HEK293 cells68. To simultane-
ously measure translation from both the main ORF and the uORF, we 
designed a vector carrying the 5′ UTR of CKS2 plus the first 20 codons 
of the main ORF, encompassing the region identified by DRACO to be 
structurally heterogeneous, fused in frame to the sequence encoding 
EGFP, followed by the sequence encoding mCherry, positioned on the 
same frame as the uORF (Fig. 5c). As this alternative frame runs uninter-
rupted across the entire length of the EGFP, translation from the uORF 
results in the production of mCherry. We then designed mutations 
aimed at stabilizing either one of the two conformations sampled by 
CKS2 5′ UTR, taking care not to change the encoded amino acids on 
both frames. Fluorescence measurement across wild-type and mutant 
reporters showed that the stabilization of conformation A resulted 
into a reduction of translation of the main ORF while leaving transla-
tion from the uORF essentially unaltered. Oppositely, stabilization of 
conformation B did not affect translation of the main ORF but increased 
translation of the uORF. As the mCherry signal tends to be weaker than 
that of EGFP, we further confirmed these observations by replacing the 
mCherry with an HA tag and measuring the expression levels of the 
proteins translated from the two frames by western blotting (Fig. 5d). 
Western blot analysis confirmed the fluorescence results, showing an 
even stronger effect of the conformation-stabilizing mutations. For 
TXNL4A, instead, we could not easily pinpoint a predominant uORF 
from ribosome profiling data; therefore, we selected the top-scoring 
uORF after averaging out the results from two algorithms for the predic-
tion of translation start sites69–71 and designed our reporter by aligning 
its frame to the mCherry frame. Given the extremely high G+C content 
and predicted stability of conformation A, we could not easily design 
mutations to stabilize it, whereas we could design mutations stabilizing 
conformation B. Notably, stabilization of conformation B resulted in a 
robust increase of translation from the uORF, while leaving translation 
from the main ORF nearly unaltered (Extended Data Fig. 3c). Further-
more, we confirmed translation of the uORF by mutagenizing the uORF 
start codon from CUG to CCG, which reduced mCherry expression 
nearly twofold.

Discussion
The ability of RNA molecules to undergo conformational changes in 
response to both internal and external signals makes it crucial to under-
stand their structural dynamics to clarify their role in fine-tuning gene 
expression and their structure–function relationship at large.

In this study, we reported transcriptome-scale maps of RNA 
secondary structure ensembles in living cells and introduced a 

generalized framework, DeConStruct, which, by combining chemical 
probing-guided ensemble deconvolution and analysis of evolutionary 
conservation by covariation, accelerates the discovery of functional 
regulatory RNA structural switches that have so far remained largely 
elusive. By leveraging this framework in bacteria, we report the dis-
covery of hundreds of candidate conserved RNA structural switches, 
which will provide an important resource for the identification of 
riboswitch classes and RNA thermometers. While characterizing the 
function and regulation of these putative switches constitutes a non-
trivial challenge, reanalysis of a recently published dataset of RNA 
polymerase-pausing sites72 showed a robust enrichment for these sites 
in 2+ regions as compared to 1 regions (42.8% for 1 regions versus 54.3% 
for 2+ regions; P = 6.8 × 10−16, one-tailed binomial test), suggesting that 
at least some of these sites might represent terminator–antiterminator 
transcriptional riboswitches. We further experimentally characterized 
a handful of candidates, demonstrating that our approach can recover 
both canonical, protein-independent thermometers, such as cspG, 
cspI and cpxP, and chaperone-dependent ones, such as lpxP. As the 
lpxP thermometer represents a true on–off temperature-controlled 
switch, oppositely to cspA, we can anticipate that it will have impor-
tant applications in synthetic biology. Furthermore, we developed a 
method for the transcriptome-wide analysis of eukaryotic 5′ UTRs by 
chemical probing, 5′UTR-MaP, which, combined with the DeConStruct 
framework, enabled the discovery of RNA structural switches regulat-
ing translation of uORFs in human mRNAs, such as CKS2 and TXNL4A.

Our data further challenge the traditional view of the cold shock 
response in bacteria, which has long been understood primarily in 
terms of RNA unfolding facilitated by the overexpression of Csps, or 
the increased structural rigidity of RNA because of lower temperatures. 
Instead, our findings suggest that the response is far more intricate, 
involving a complex redistribution of RNA structural ensembles. This 
indicates that cold shock induces a broader and more dynamic reor-
ganization of RNA structures than previously thought, reflecting a 
sophisticated cellular adaptation to temperature changes. Further-
more, the large changes in relative stoichiometries observed for the 
cspA and lpxP ensembles upon temperature shift, which are substan-
tially higher than one would typically expect from the temperature 
dependence from the Boltzmann distribution alone, reinforce the 
notion that the cellular environment has a crucial role in determining 
the composition of RNA ensembles in vivo.

Despite representing a crucial step toward a better understanding 
of the regulatory roles of RNA structures in living cells and the nuanced 
dynamics of RNA structure ensembles in response to environmental 
cues, the current study presents a number of limitations. Firstly, the use 
of DMS limits chemical probing to the interrogation of A and C, which 
might hamper the identification of small and A/C-poor structurally 
dynamic regions. This will hopefully be addressed in future studies by 
taking advantage of recent advances in chemical probing protocols 
and reagents55,73 that allow querying all four nucleotides. Secondly, an 
implicit assumption of chemical probing-guided ensemble deconvolu-
tion analyses is that, to identify coexisting alternative structural states 
for an RNA, they need to interconvert at a rate that is slower than the 
timescale of the probing experiment. Indeed, transition barrier analysis 
for the alternative conformations identified in this study showed that, 
in general, they tend to be separated by high energy barriers (median 
at 37 °C: 8.6 kcal mol−1, median at 10 °C: 13.5 kcal mol−1; Supplementary 
Fig. 19a) and their interconversion requires the disruption or creation 
of, on average, more than 50% of the base pairs (52–57%; Supplementary 
Fig. 19b), thus suggesting that they are unlikely to spontaneously inter-
convert on a biologically relevant timescale. Rather, their interconver-
sion in the cell is likely a chaperone-mediated process. Accordingly, 2+ 
regions tend to be significantly enriched for binding of the chaperones 
CspC and CspE as compared to 1 regions (CspC P = 1.0 × 10−25, CspE 
P = 2.8 × 10−34, one-tailed binomial test). Oppositely, as previously 
discussed, it is possible that 1 regions might represent an average of 
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short-lived (that is, excited) states, interconverting at a faster rate, or 
might sample alternative conformations at stoichiometries too low 
to be detected by chemical probing-guided ensemble deconvolu-
tion analyses. Indeed, a well-known limitation of currently available 
ensemble deconvolution methods3,4,6 is the impossibility to detect 
conformations with abundances below 5–10%.

Nevertheless, although the structural switches identified in this 
study might only represent a conservative estimate of the actual RNA 
structural diversity in living cells, our findings advance our under-
standing of gene expression regulation and will aid the development 
of innovative RNA-targeted therapeutic strategies74–76.
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Methods
Strains, growth conditions and in vivo DMS probing
E. coli K-12 MG1655 derivative strains DH5α and TOP10 were streaked 
on Luria–Bertani (LB) plates and a single colony was picked, inoc-
ulated in 4 ml of LB broth and grown overnight at 37 °C with shak-
ing. The day after, the culture was diluted to an optical density at 
600 nm (OD600) = 0.05 in 25 ml of LB broth and grown at 37 °C until 
OD600 ≈ 0.5 (~2 h). For cold shock, 2 ml of this culture was mixed with 
2 ml of LB broth prechilled to 0 °C in a water–ice slurry and then 
incubated at 10 °C for 20 min. For DMS (D186309, Merck) probing, 
DMS from a fresh 1:4 dilution in ethanol (~2.64 M) was added to 
the bacteria at a final concentration of 200 mM. Probing was con-
ducted for 2 min at 37 °C or for 30 min at 10 °C (to achieve compa-
rable modification efficiencies) with moderate shaking (800 rpm). 
Reactions were then quenched by addition of one volume of 
1 M DTT, after which bacteria were collected by centrifugation at 
17,000g for 1 min. The supernatant was discarded; the pellet was 
washed twice with 0.5 M DTT and then immediately subjected to RNA  
extraction.

Human HEK293 cells were cultured in high-glucose DMEM medium 
(L0104, Biowest), supplemented with 10% FBS (H1138, Merck), 25 U per 
ml penicillin and 25 μg ml−1 streptomycin at 37 °C and 5% CO2. For ATP 
depletion experiments, cells were washed twice in PBS and then kept 
for 20 min in glucose-free DMEM (11966025, Thermo Fisher), supple-
mented with 10% FBS, 1 mM sodium pyruvate, 25 U per ml penicillin, 
25 μg ml−1 streptomycin, 10 mM 2-deoxy-d-glucose (25972-M, Merck) 
and 10 mM sodium azide (71289, Merck) at 37 °C and 5% CO2. DMS from 
a fresh 1:4 dilution in ethanol (~2.64 M) was directly added to the cells 
at a final concentration of 150 mM. Probing was conducted for 2 min 
at 37 °C. Reactions were then quenched by addition of one volume of 
1 M DTT, after which cells were collected by centrifugation at 5,000g 
for 1 min. Supernatant was discarded and pellets were immediately 
lysed by direct addition of 1 ml of ice-cold TRIzol reagent (15596018, 
Thermo Fisher Scientific).

RNA extraction
For E. coli, cell pellets were resuspended in 62.5 μl of resuspen-
sion buffer (20 mM Tris-HCl pH 8.0, 80 mM NaCl and 10 mM EDTA  
pH 8.0), supplemented with 100 μg ml−1 final lysozyme (L6876, Merck) 
and 20 U of SUPERase•In RNase inhibitor (A2696, Thermo Fisher 
Scientific), by vigorous vortexing. Samples were incubated at room 
temperature for 1 min, followed by addition of 62.5 μl of lysis buffer 
(0.5% Tween-20, 0.4% sodium deoxycholate, 2 M NaCl and 10 mM 
EDTA). Samples were then inverted 5–10 times and incubated at room 
temperature for 2 min, followed by an additional 2 min on ice. Then, 
1 ml of ice-cold TRIzol reagent was then added and samples were 
vigorously vortexed for 15 s.

Both bacterial and human samples were extracted as per manu-
facturer instructions. Residual genomic DNA (gDNA) was removed by 
digestion with TURBO DNase I (AM2239, Thermo Fisher Scientific) at 
37 °C for 30 min.

DMS probing of bacterial in vitro refolded RNA
First, 10 μg of total RNA from exponentially growing E. coli was diluted 
in 89 μl of nuclease-free water, then heat-denatured at 95 °C for 
2 min and immediately chilled on ice for 1 min. Next, 10 μl of ice-cold  
10× folding buffer (250 mM HEPES pH 7.5 and 2 M KCl) were then  
added and samples were incubated at 37 °C for 15 min. Then, 1 μl of 
500 mM MgCl2 (prewarmed at 37 °C) was added and samples were 
incubated at 37 °C for 15 min to enable tertiary-structure formation. 
Probing was conducted by adding DMS at a final concentration of 
200 mM and incubating the samples at 37 °C for 2 min. Reactions were 
then quenched by addition of 1 volume 1 M DTT, after which RNA was 
cleaned up on Monarch spin RNA cleanup columns (10 μg; T2030L, 
New England Biolabs) as per manufacturer instructions.

Extraction and DMS probing of bacterial native  
deproteinized rRNA
Native deproteinized E. coli rRNA was prepared as previously 
described22. Briefly, 2 ml of DH5α or TOP10 cells grown to OD600 ≈ 0.5 
were collected by centrifugation at 1,000g for 5 min (4 °C) and then 
resuspended in 1 ml of resuspension buffer (15 mM Tris-HCl pH 8.0, 
450 mM sucrose and 8 mM EDTA), supplemented with 100 μg ml−1 
final lysozyme. Samples were incubated at 22 °C for 5 min and then on 
ice for an additional 10 min, after which protoplasts were collected by 
centrifugation at 5,000g for 5 min (4 °C). The protoplast pellet was then 
resuspended in 120 μl of protoplast lysis buffer (50 mM HEPES pH 8.0, 
200 mM NaCl, 5 mM MgCl2 and 1.5% SDS), supplemented with 0.2 μg μl−1 
proteinase K (P2308, Merck) and samples were incubated at 22 °C for 
5 min, followed by 5 min on ice. SDS was precipitated by addition of 
30 μl of SDS precipitation buffer (50 mM HEPES pH 8.0, 1 M potassium 
acetate and 5 mM MgCl2), followed by centrifugation at 17,000g for 
5 min (4 °C). Supernatant was extracted twice with phenol, chloroform 
and isoamyl alcohol (25:24:1), pre-equilibrated in RNA folding buffer 
(50 mM HEPES pH 8.0, 200 mM NaCl and 5 mM MgCl2), and twice with 
chloroform. Deproteinized samples were then supplemented with 
20 U of SUPERase•In RNase inhibitor equilibrated at 37 °C for 20 min. 
DMS from a 1:4 dilution in ethanol was added to a final concentration 
of 200 mM and samples were incubated at 37 °C for 2 min with shaking 
(800 rpm). Reactions were quenched by the addition of one volume of 
1 M DTT and then cleaned up using Monarch spin RNA cleanup columns 
as per manufacturer instructions.

DMS probing of candidate bacterial RNA thermometers in vitro
T7 templates of cspB, cspG, cspI, cpxP and lpxP, including the 5′ UTR and 
CDS, were generated by PCR from DH5α gDNA using Q5 high-fidelity 2× 
master mix (M0492L, New England Biolabs). In vitro transcription reac-
tions were performed using the HiScribe T7 high-yield RNA synthesis 
kit (E2040L, New England Biolabs) in 20 μl, using 1 μg of an equimolar 
pool of all templates. Reactions were incubated for 4 h at either 37 °C 
or 10 °C, after which RNA was probed by directly adding 200 mM final 
DMS to the reactions and incubating at 37 °C for 2 min or at 10 °C for 
30 min. Reactions were then quenched by addition of one volume of 
1 M DTT, after which RNA was cleaned up on Monarch spin RNA cleanup 
columns as per manufacturer instructions. Template DNA was then 
removed by digestion with TURBO DNase I (AM2239, Thermo Fisher 
Scientific) at 37 °C for 30 min and RNA samples were again cleaned up 
on Monarch spin RNA cleanup columns.

Bacterial DMS-MaPseq library preparation
DMS-MaPseq libraries were prepared as previously described4, with 
minor changes. Before library preparation, highly abundant short 
RNA species, such as tRNAs, were depleted on Monarch spin RNA 
cleanup columns by loading a 1:1:1 mixture of total RNA in nuclease-free 
water, RNA-binding buffer and 100% ethanol. For transcriptome-wide 
DMS-MaPseq libraries, rRNA depletion was performed on 1.1 μg of total 
RNA using the RiboCop for bacteria kit (126, Lexogen), with two minor 
changes to the manufacturer’s protocol; the denaturation temperature 
was increased to 95 °C and probe annealing temperature was lowered 
to 55 °C. Following rRNA depletion, RNA was cleaned up on Monarch 
spin RNA cleanup columns and eluted in 8 μl of nuclease-free water. 
For total RNA DMS-MaPseq libraries used for the optimization of fold-
ing parameters, 1 μg of total RNA was instead directly used as input 
for the subsequent step. RNA was supplemented with 2 μl of 100 μM 
random hexamers, 2 μl of deoxynucleoside triphosphates (dNTPs; 
10 mM each) and 4 μl of 5× RT buffer (250 mM Tris-HCl pH 8.3, 375 mM 
KCl and 15 mM MgCl2). Samples were then incubated at 94 °C for 5.5 min 
to simultaneously denature and fragment the RNA to a median size 
of 200 nt and immediately transferred to ice for 1 min. Samples were 
then supplemented with 1 μl of 0.1 M DTT, 20 U of SUPERase•In RNase 
inhibitor, 200 U of TGIRT-III enzyme (TGIRT50, InGex) and 25 ng μl−1 
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actinomycin D (A1410, Merck) and incubated at 25 °C for 10 min, 57 °C 
for 1 h and 60 °C for 1 h. Addition of actinomycin D increased strand 
specificity by ~10%. TGIRT-III was degraded by adding 2 μg of proteinase 
K and incubating at 37 °C for 20 min. Proteinase K was inactivated by 
the addition of protease inhibitor cocktail (P8340, Merck). cDNA–RNA 
hybrids were then converted to double-stranded DNA (dsDNA) using 
the NEBNext Ultra II directional RNA second-strand synthesis module 
(E7550, New England Biolabs) by incubating at 16 °C for 1 h. dsDNA was 
cleaned up with 1.8 volumes of NucleoMag NGS cleanup and size select 
beads (744970, Macherey Nagel) and used as input for the NEBNext 
Ultra II DNA library prep kit for Illumina (E7645S, New England Biolabs) 
as per manufacturer instructions.

5′UTR-MaP library preparation
Before library preparation, ~1.5 μg of poly(A)+ RNA was enriched 
per sample using oligo d(T)25 magnetic beads (S1419S, New England 
Biolabs). RNA was directly eluted from the beads by fragmentation 
in 4 mM MgCl2 for 5.5 min at 94 °C and then cleaned up on Monarch 
spin RNA cleanup columns. Endogenous 5′-phosphate groups and 
2′,3′-cyclic phosphates generated by chemical fragmentation were 
removed by treatment with 1 U of shrimp alkaline phosphatase (rSAP) 
(M0371L, New England Biolabs) in a final volume of 20 μl at 37 °C for 
30 min, followed by cleanup on Monarch spin RNA cleanup columns. 
Decapping of 5′-capped RNA fragments was performed by treating 
the RNA with 5 U of Cap-Clip acid pyrophosphatase (C-CC15011H, 
CellScript) in a final volume of 20 μl at 37 °C for 1 h, followed by 
cleanup on Monarch spin RNA cleanup columns. Decapped RNA frag-
ments were then ligated to an RNA adaptor (CUACACGACGCUCUUC-
CGAUCU) harboring a 5′-biotin–TEG modification. Decapped RNA 
fragments and the RNA adaptor (1 μl of a 10 μM dilution) were first 
denatured by incubation at 70 °C for 5 min, after which the samples 
were snap-cooled on ice for 1 min. Samples were then supplemented 
with 30 U of high-concentration T4 RNA ligase 1 (single-stranded RNA 
ligase; M0437M, New England Biolabs) and ligation was performed 
in a final volume of 20 μl at 25 °C for 2 h in the presence of 12.5% PEG-
8000 and 1 mM ATP. Then, 10 min before the end of the incubation, 
20 μl of Dynabeads MyOne Streptavidin T1 beads (65601, Thermo 
Fisher Scientific) were aliquoted in a 2-ml tube, washed twice in 100 μl 
of 2× binding and wash buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA 
and 2 M NaCl) and then resuspended in 40 μl of the same buffer. RNA 
samples were then supplemented with 20 μl of nuclease-free water 
to dilute the PEG and then transferred to the washed beads. Samples 
were extensively vortexed and then incubated for 15 min at 22 °C in a 
thermomixer with constant shaking (1,000 rpm). Samples were then 
placed on the magnet, the supernatant was discarded and beads were 
washed twice with 500 μl of 1× binding and wash buffer by extensive 
vortexing. Two additional washes were then performed with 500 μl 
of nuclease-free water by incubating at 80 °C for 2 min. We found this 
step to be critical when preparing libraries from DMS-treated samples 
but not 2A3-treated samples, as DMS modifications introduce positive 
charges on the RNA that, because of the negative charge of the phos-
phate backbone, cause the RNA to aggregate. Heat denaturation at this 
stage allows washing away non-5′-cap-derived fragments. Ligated RNA 
fragments were eluted by incubating the beads in 50 μl of formamide 
elution buffer (95% formamide and 10 mM EDTA) at 95 °C for 3 min and 
then cleaned up on Monarch spin RNA cleanup columns. Eluted RNA 
fragments were ligated to a 5′-preadenylated and C3 spacer 3′-blocked 
DNA 3′ adaptor (rApp-AGATCGGAAGAGCACACGTCT-SpC3). RNA frag-
ments and the adaptor (1 μl of a 10 μM dilution) were first denatured by 
incubation at 70 °C for 5 min, after which the samples were snap-cooled 
on ice for 1 min. Samples were then supplemented with 200 U of T4 RNA 
ligase 2, truncated KQ (M0373L, New England Biolabs), and ligation 
was performed in a final volume of 20 μl at 25 °C for 2 h in the presence 
of 12.5% PEG-8000. Samples were cleaned up on Monarch spin RNA 
cleanup columns. For 2A3-treated samples, RNA was eluted in 8 μl of 

nuclease-free water, supplemented with 2 μl of 10 μM RT primer and 
1 μl of 10 mM dNTPs; for DMS-treated samples, RNA was eluted in 9 μl 
of nuclease-free water, supplemented with 2 μl of 10 μM RT primer and 
2 μl of 10 mM dNTPs. RNA was incubated at 70 °C for 5 min and then 
snap-cooled on ice for 1 min. RT reactions were performed in a final 
volume of 20 μl. For 2A3-treated samples reactions were supplemented 
with 4 μl of 5× RT buffer (250 mM Tris-HCl pH 8.0 and 375 mM KCl), 2 μl 
of DTT 0.1 M, 20 U of SUPERase•In RNase inhibitor, 200 U of Super-
Script II RTase (18064022, Thermo Fisher Scientific) and 6 mM final 
MnCl2 and incubated for 1.5 h at 42 °C, 10 min at 50 °C, 10 min at 55 °C, 
10 min at 60 °C and 15 min at 75 °C. For DMS-treated samples, reactions 
were supplemented with 4 μl of 5× RT buffer (250 mM Tris-HCl pH 8.3, 
375 mM KCl and 15 mM MgCl2], 1 μl of 0.1 M DTT, 20 U of SUPERase•In 
RNase inhibitor and 200 U of TGIRT-III enzyme and incubated for 
10 min at 42 °C, 1 h at 57 °C and 1 h at 60 °C. The TGIRT-III–RNA–cDNA 
complex was destroyed by the addition of 1 μl 10 M NaOH, followed by 
incubation at 95 °C for 3 min. Reactions were cleaned up on Monarch 
spin RNA cleanup columns, using one volume of RNA-binding buffer 
and one volume of 100% ethanol to only recover fragments ≥ 200 nt. 
Barcoding was performed by PCR using the NEBNext Ultra II Q5 master 
mix (M0544X, New England Biolabs) as per manufacturer instructions.

HEK293 total RNA DMS-MaPseq library prep
To mimic the same conditions used for the 5′UTR-MaP library prepara-
tion, 100 ng of total RNA per sample was fragmented in 4 mM MgCl2 
for 5.5 min at 94 °C and then cleaned up on Monarch spin RNA cleanup 
columns as per manufacturer instructions. The 2′,3′-cyclic phosphates 
generated by chemical fragmentation were removed by treatment 
with 1 U of rSAP in a final volume of 20 μl at 37 °C for 30 min, followed 
by heat inactivation of the enzyme at 70 °C for 5 min. Reactions were 
then supplemented with 20 U of T4 polynucleotide kinase (M0201L,  
New England Biolabs), 1 mM ATP and 5 mM DTT in a final volume of 50 μl 
and incubated at 37 °C for 1 h. The 5′-phosphorylated RNA fragments 
were then cleaned up on Monarch spin RNA cleanup columns and 
subjected to adaptor ligation, RT and PCR as detailed above.

Targeted DMS-MaPseq analysis of CKS2 and TXNL4A
Targeted DMS-MaPseq analysis of CKS2 and TXNL4A 5′ UTRs was per-
formed using total RNA from HEK293 transfected for 24 h with the 
pEF6 vector carrying the wild-type 5′ UTR sequences as described 
below and probed with 150 mM DMS for 2 min at 37 °C. RT was carried 
out using gene-specific RT primers targeting the CDS of EGFP, harbor-
ing the reverse-complemented Illumina 3′ adaptor. Here, 3 μg of RNA 
was supplemented with 2 μl of 10 μM gene-specific RT primer and 
2 μl of 10 mM dNTPs. RNA was incubated at 70 °C for 5 min and then 
snap-cooled on ice for 1 min. Samples were supplemented with 4 μl of 
5× RT buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl and 15 mM MgCl2), 
1 μl of 0.1 M DTT, 20 U of SUPERase•In RNase inhibitor and 200 U of 
TGIRT-III enzyme and incubated for 10 min at 50 °C, 1 h at 57 °C and 1 h 
at 60 °C. RT reactions were performed in a final volume of 20 μl. The 
TGIRT-III–RNA–cDNA complex was destroyed by the addition of 1 μl of 
10 M NaOH, followed by incubation at 95 °C for 3 min. Reactions were 
cleaned up on Monarch spin RNA cleanup columns as per manufacturer 
instructions. Addition of the Illumina 5′ adaptor and barcoding were 
performed simultaneously by PCR, using 0.5 μM of i5 and i7 multiplex-
ing primers, 0.025 μM of gene-specific forward primer harboring the 
Illumina 5′ adaptor and the NEBNext Ultra II Q5 master mix, as per 
manufacturer instructions.

Cloning of cspG, cpxP and lpxP constructs and mutagenesis  
of lpxP
Wild-type cspG, cpxP and lpxP FLAG-tagged, IPTG-inducible con-
structs, including the 5′ UTR and CDS, were prepared by amplifying 
the relevant regions from DH5α gDNA and cloning them in pET22b(+) 
vector (69744, Merck) between the XbaI and EcoRI sites. The exact 
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transcription start site (TSS) was determined from DMS-MaPseq cov-
erage. Similarly, cspG, cpxP and lpxP FLAG-tagged, IPTG-inducible 
constructs, including the sole CDS, were cloned in pET22b(+) between 
the NdeI and EcoRI sites. For cpxP, as the identified candidate ther-
mometer encompassed part of the CDS, the CDS was cloned starting 
at the third in-frame ATG codon by exploiting a naturally occurring, 
in-frame NdeI site. As RNA cotranscriptional folding can be influenced 
by the speed of the RNA polymerase, the vector’s T7 promoter was 
replaced with a tac promoter. The SLalt-stabilized lpxP 5′ UTR mutant 
was prepared using the Q5 site-directed mutagenesis kit (E0554S, 
New England Biolabs) as per manufacturer instructions. All cloning 
steps were performed in NEB 5α competent E. coli cells (C2987H, 
New England Biolabs). All vectors were verified by Sanger sequenc-
ing (Macrogen Europe). The sequences of primers used for cloning 
and mutagenesis are available in Supplementary Table 9. The vector 
containing the wild-type lpxP gene (inclusive of 5′ UTR) was deposited 
to Addgene (plasmid 212594).

Cloning and mutagenesis of CKS2 and TXNL4A 5′ UTRs
Wild-type CKS2 and TXNL4A 5′ UTRs were cloned in a modified pEF6 
vector between the BamHI and EcoRI sites. Briefly, a sequence encoding 
EGFP (frame 1)–STOP–T2A–mCherry (frame 3) was assembled by PCR 
and cloned between the EcoRI and XbaI sites of the pEF6/V5-His vector 
(K961020, Thermo Fisher Scientific). CKS2 was reverse-transcribed 
and amplified from HEK293 total RNA. CKS2 mutants designed to sta-
bilize conformations A or B were prepared using the Q5 site-directed 
mutagenesis kit as per manufacturer instructions. For TXNL4A, ampli-
fication proved much more challenging because of the extreme G+C 
content. Therefore, both wild-type and mutant stabilizing conforma-
tion B and the mutant disrupting the CUG start codon of the candidate 
uORF were prepared by PCR assembly of overlapping oligonucleotides 
using Q5 high-fidelity 2× master mix. As the candidate uORF of TXNL4A 
resided on frame 2, one nucleotide (G160) was deleted from a loop 
region at the end of the 5′ UTR of TXNL4A to align it to the mCherry 
frame. The sequences of primers used for cloning and mutagenesis 
are available in Supplementary Table 9.

Western blot analysis of bacterial protein expression  
at 37 °C versus 10 °C
Sanger-verified vectors were transformed in BL21(DE3) competent 
E. coli cells (C2627H, New England Biolabs). Two independent colonies 
were picked and inoculated in 3 ml of LB broth and grown overnight at 
37 °C with shaking. The next day, bacteria were diluted to OD600 ≈ 0.05 
and grown until OD600 ≈ 0.3. At this point, IPTG was added to a final 
concentration of 1 mM and cells were incubated with shaking at 37 °C 
for 30 min. Bacteria were then split into two separate aliquots, pelleted 
and resuspended in LB broth at 37 °C or 10 °C. Bacteria were then grown 
with shaking at 37 °C or 10 °C and 2-ml aliquots were collected after 
30 min, 1 h or 2 h. Collected bacteria were pelleted and pellets were 
resuspended in 60 μl of lysis buffer (10 mM Tris-HCl pH 8.0, 10 mM 
EDTA and 0.1% Triton X-100), supplemented with 1 μg μl−1 lysozyme and 
1:100 dilution protease inhibitor cocktail. Samples were then subjected 
to ten cycles of sonication (5 s on, 5 s off) using a UP200St (Hielscher) 
ultrasonic processor. Protein concentrations were determined using 
a Pierce BCA protein assay kit (23225, Thermo Fisher Scientific) as per 
manufacturer instructions. Then, 30 μg of lysate was resolved on 10% 
SDS–PAGE gels, followed by transfer to nitrocellulose membrane using 
the iBlot 2 gel transfer system (IB21001, Thermo Fisher Scientific). 
Membranes were blocked by incubation for 1 h in 5% (w/v) nonfat dry 
milk (A0830, PanReac AppliChem ITW Reagents) in PBS, supplemented 
with 0.001% final Tween-20. Immunoblotting was performed using 
monoclonal anti-FLAG M2 antibody (F1804, Merck) or anti-LacI (9A5) 
universal antibody (EG1501, Kerafast) and Immobilon Forte western 
HRP substrate (WBLUF0100, Merck). PageRuler Plus (26619, Thermo 
Fisher Scientific) was used as the size standard.

Analysis of lpxP expression in csp knockouts
Wild-type and csp-knockout BW25113 E. coli cells from the KEIO col-
lection53 were first made competent using the Mix&Go! E. coli trans-
formation kit (T3001, Zymo Research) and then transformed with 
the IPTG-inducible lpxP vector as described above. Two independent 
colonies were picked, inoculated in 3 ml of LB broth and grown over-
night at 37 °C with shaking. The next day, bacteria were diluted to 
OD600 ≈ 0.05 and grown until OD600 ≈ 0.5. At this point, 1 ml of bacteria 
were directly mixed with 1 ml of ice-cold LB broth containing 0.02 mM  
IPTG and bacteria were incubated at 10 °C for 1 h with moderate  
shaking (800 rpm). Lysis and western blot analysis were conducted  
as described above. Knockout of csp genes was validated by PCR on 
gDNA from the individual clones.

In vitro transcription–translation using the PURE system
In vitro translation analysis of full-length wild-type and SLalt-stabilized 
mutant or CDS-only lpxP was performed using the PURExpress in vitro 
protein synthesis kit (E6800S, New England Biolabs). Reactions were 
conducted in a final volume of 6.25 μl, using 2.5 μl of solution A,  
1.875 μl of solution B, 0.1 μl of SUPERase•In RNase inhibitor and 
~50 fmol of pET22b(+) template (harboring a T7 promoter instead 
of a tac promoter). Reactions were incubated at 37 °C for 1.5 h, then 
immediately mixed with 2× loading dye and resolved on a 12% poly-
acrylamide gel.

Western blot analysis of CKS2 wild type and 
conformation-stabilizing mutants
Sanger-verified vectors were transfected in HEK293 cells. Briefly, on 
the first day, 800,000 cells were plated per well in a six-well plate pre-
coated with 0.001% poly(l-lysine) (P8920, Merck). On the second day, 
5 μg of plasmid DNA was transfected using 10 μl of Lipofectamine 2000 
transfection reagent (11668019, Thermo Fisher Scientific) in 800 μl 
of Opti-MEM reduced-serum medium (51985034, Thermo Fisher 
Scientific). Then, 6 h after transfection, cells were supplemented with 
1 ml of complete DMEM, supplemented with 20% FBS but without 
antibiotics. On the third day, cells were washed twice in PBS and then 
collected in radioimmunoprecipitation assay buffer (10 mM Tris-HCl 
pH 7.5, 150 mM NaCl, 0.1% SDS, 0.1% sodium deoxycholate and 1% 
Triton X-100), supplemented with protease inhibitor cocktail. After 
discarding membranes by centrifugation at 17,000g for 10 min (4 °C), 
protein concentrations were determined using a Pierce BCA protein 
assay kit as per manufacturer instructions. Then, 10 μg of lysate was 
resolved on 10% SDS–PAGE gels, followed by transfer to nitrocel-
lulose membrane using the iBlot 2 gel transfer system. Membranes 
were blocked by incubation for 1 h in 5% (w/v) nonfat dry milk in PBS, 
supplemented with 0.001% final Tween-20. Immunoblotting was 
performed using anti-EGFP polyclonal antibody (CAB4211, Thermo 
Fisher Scientific), anti-HA tag polyclonal antibody (PA1-985, Thermo 
Fisher Scientific), anti-GAPDH monoclonal antibody (60004-1-Ig, 
Proteintech) and Immobilon Forte western HRP substrate. PageRuler 
Plus was used as the size standard.

Fluorescence microscopy analysis of CKS2 and TXNL4A wild 
type and conformation-stabilizing mutants
For fluorescence microscopy analysis, on day one, 50,000 HEK293 
cells were plated on 96-well flat-bottom plates precoated with 0.001% 
poly(l-lysine). On the second day, 75 ng of plasmid DNA was transfected 
using 0.625 μl of Lipofectamine 2000 transfection reagent in 50 μl of 
Opti-MEM reduced-serum medium. Then, 6 h after transfection, cells 
were supplemented with 100 μl of complete DMEM, supplemented 
with 20% FBS but without antibiotics. On the third day, cells were 
imaged with a Zeiss Observer Z1 widefield microscope and ×10 objec-
tive lens. The fluorescence signal per cell was quantified with Fiji77 
version 2.14.0/1.54g. The EGFP channel was used to identify particles 
by signal thresholding.
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Processing of bacterial DMS-MaPseq data
Following sequencing, paired-end reads were clipped of sequencing 
adaptors using Cutadapt78 version 4.4 (parameters: -A AGATCGGAAG 
-a AGATCGGAAG -m 100:100 -O 1) and merged using PEAR79 version 
0.9.11 (parameters: -n 100 -q 20 -u 0 -e -y 10G -z). Merged reads were 
then combined with R1 and the reverse-complemented R2 for read pairs 
that could not be merged. Next, a comprehensive annotation of E. coli 
transcriptional units with experimentally determined TSSs was built by 
aggregating 5′ UTR information from RegulonDB33 and transcriptional 
units from EcoCyc80 and the corresponding sequences were extracted 
from the E. coli str. K-12 substr. MG1655 genome (GenBank U00096.3). 
For the analysis of known riboswitches, a reference was built includ-
ing the sole riboswitch regions ± 50 nt. Reads were then mapped to 
this reference using the rf-map tool of RNA Framework81 version 2.8.3 
and Bowtie2 (ref. 82) version 2.3.5.1 after clipping terminal bases with 
Phred quality < 20, discarding reads containing internal Ns and trim-
ming the six 5′-most bases to account for possible mispriming artifacts 
(parameters: -b2 -cq5 20 -ctn -cmn 0 -cl 50 -mp --very-sensitive-local 
--nofw -b5 6). Alignments in SAM format were sorted and converted to 
BAM format using SAMtools83 version 1.15.1. BAM alignments were then 
processed using RNA Framework’s rf-count to generate both RC files 
(containing per-base mutations and coverage) and MM files (containing 
a map of mutated positions per read). Aligned reads spanning less than 
100 nt of a transcript and reads having more than 10% mutated bases 
or fewer than two mutations were discarded. Insertions, ambiguously 
aligned deletions and deletions longer than 1 nt were ignored. Muta-
tions were considered only if both the mutated base and the two sur-
rounding bases had Phred quality > 20; consecutive mutations falling 
within 3 nt of each other were ignored (parameters: -m -mm -wl 2000 
-ds 100 -es -na -ni -md 1 -dc 3 -me 0.1). DMS-MaPseq data from total 
RNA, used for the calibration of folding parameters described below, 
was analyzed with minor changes to the above protocol. Briefly, reads 
were mapped to a reference composed of only the 16S and 23S rRNA 
sequences. The minimum length spanned by reads was decreased 
to 90 nt (as total RNA DMS-MaPseq experiments were sequenced as 
single-read 100 bp, in contrast to rRNA-depleted DMS-MaPseq experi-
ments that were sequenced as paired-end 150 bp) and reads harboring 
<2 mutations were also retained (parameters: -m -ds 90 -es -na -ni -dc 
3 -ow -me 0.1 -md 1).

Processing of human 5′UTR-MaP data
Following sequencing, paired-end reads were clipped of sequencing 
adaptors using Cutadapt (parameters: -A AGATCGGAAG -a AGATCG-
GAAG -m 75:75 -O 1) and merged using PEAR (parameters: -n 75 -q 20 
-u 0 -e -y 10G -z). Merged reads were then combined with R1 and the 
reverse-complemented R2 for read pairs that could not be merged. 
Reads were then mapped to the MANE version 1.2 reference (plus the 
18S and 28S rRNA sequences) using the rf-map tool of RNA Framework 
and Bowtie2 after clipping terminal bases with Phred quality < 20 and 
discarding reads containing internal Ns (parameters: -b2 -cq5 20 -ctn 
-cmn 0 -mp --very-sensitive-local -bnr). Alignments in SAM format were 
sorted and converted to BAM format using SAMtools. BAM alignments 
were then processed using RNA Framework’s rf-count to generate 
both RC files (containing per-base mutations and coverage) and MM 
files (containing a map of mutated positions per read). Aligned reads 
spanning less than 90 nt of a transcript and reads having more than 10% 
mutated bases or fewer than two mutations were discarded. Insertions, 
ambiguously aligned deletions and deletions longer than 1 nt were 
ignored. Mutations were considered only if both the mutated base 
and the two surrounding bases had Phred quality > 20 and consecutive 
mutations falling within 3 nt of each other were ignored (parameters: 
-m -mm -wl 2000 -ds 100 -es -na -ni -md 1 -dc 3 -me 0.1). DMS-MaPseq 
data from total RNA, used for the calibration of folding parameters 
described below, were analyzed with minor changes to the above pro-
tocol. Briefly, no merging was performed as samples were sequenced 

as single reads and reads were mapped to a reference composed of only 
the 18S and 28S rRNA sequences.

Optimization of folding parameters
RC files from total RNA DMS-MaPseq experiments were processed 
using RNA Framework’s rf-norm to obtain normalized reactivity pro-
files (parameters: -sm 4 -nm 3 -rb AC -mm 1 -n 1,000). For E. coli second-
ary structure modeling, optimal slope (4.8) and intercept (−0.8) values 
were identified through jackknifing by simultaneously optimizing 
folding of 16S and 23S rRNAs over both in vivo and ex vivo deprotein-
ized DMS-MaPseq data from both DH5α and TOP10 cells using RNA 
Framework’s rf-jackknife (parameters: -rp -md 600 -x -m), ViennaRNA84 
version 2.5.1 and the modified Fowlkes–Mallows index5.

For human secondary structure modeling, optimal slope (4.6) and 
intercept (−2) values were identified by simultaneously optimizing 
folding of 28S rRNA over both replicate experiments.

Ensemble deconvolution analysis
Ensemble deconvolution was performed using the DRACO algorithm4. 
Briefly, DRACO slides a window of a user-defined length along each 
transcript, retaining only those reads falling entirely within the win-
dow’s boundaries. For each window, a graph is then generated by 
exploiting the comutation information so that, basically, each mutation 
in a read represents a vertex and two bases observed to comutate within 
the same read are connected by an edge. The normalized Laplacian of 
the graph’s adjacency matrix is then subjected to eigen decomposition 
and eigengap analysis to identify the number of coexisting RNA con-
formations making up the ensemble. This number is then used to 
perform a soft partitioning of the graph (graph-cut) to reconstruct the 
individual reactivity profiles of the different conformations and their 
relative stoichiometries. In its original implementation, this graph-cut 
step involved randomly initializing the weight of each vertex for each 
conformation N times (with N = 50), followed by selection of the set of 
weights yielding the lowest normalized graph-cut score. This initial set 
of weights was then iteratively altered by a factor ε = 1

2C
, where C is  

the number of conformations making up the ensemble, until the nor-
malized graph-cut score was minimized. As this procedure was per-
formed only once, the risk was that the identified set of weights would 
represent only a local minimum of the graph-cut score rather than the 
true minimum, potentially leading to inconsistent conformation recon-
struction across consecutive DRACO runs. Furthermore, the value of 
ε was typically too large to enable the accurate reweighting of the 
vertices (for instance, with C = 2 and ε = 0.25). To address these issues, 
we introduced the following improvements in the DRACO algorithm 
(available as version 1.2 from the repository https://github.com/ 
dincarnato/draco/): (1) the number of random initializations N was 
increased to 500 (adjustable through the --softClusteringInits param-
eter); (2) the weight factor ε was lowered to 0.005 (adjustable through 
the --softClusteringWeightModule parameter); and (3) the entire 
graph-cut procedure is now repeated multiple times (adjustable 
through the --softClusteringIters parameter), to ensure convergence 
toward the true normalized graph-cut score minimum. Before running 
DRACO, the MM files generated by rf-count were preprocessed using 
the filterMM utility (available from the repository https://github.com/
dincarnato/labtools) to discard reads having <2 A/C mutated bases 
and regions of extremely high coverage were randomly downsampled 
to achieve a maximum per-base coverage of 500,000×.

For E. coli, DRACO analysis was performed with a window size of 
100 nt, slid in 5-nt increments, requiring a minimum base coverage of 
2,000× and a minimum of 2,000 reads after filtering to perform the eigen 
deconvolution and repeating the graph-cut procedure 30 times (param-
eters: --absWinLen 100 --absWinOffset 5 --minBaseCoverage 2000 
--minFilteredReads 2000 --minPermutations 10 --maxPermutations 50 
--firstEigengapShift 0.95 --lookaheadEigengaps 1 --softClusteringIters 
30 --softClusteringInits 500 --softClusteringWeightModule 0.005).
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For HEK293, the window size was reduced to 90 nt and slid in 1-nt 
increments (parameters: --absWinLen 90 --absWinOffset 1) to account 
for the smaller library insert size, whereas all other parameters were 
left unchanged.

Evaluation of sequencing depth’s effect on the ensemble 
deconvolution of known riboswitches
To evaluate the ability of DRACO to detect known riboswitches from 
in vivo probing data, we used data from TOP10 bacteria and selected 
four riboswitches belonging to mRNAs having different expression 
levels in our dataset. A reference was built including only the ribos-
witch ± 50 nt and reads were preprocessed and mapped as detailed 
in the previous paragraphs. The resulting MM files were then ran-
domly subsampled using the extract function of the rf-mmtools util-
ity of RNA Framework by setting the value of the -rs parameter to 2, 
4, 8, 10, 40 or 80 to subsample 1/2, 1/4, 1/8, 1/10, 1/40 or 1/80 of the 
reads mapping to each riboswitch, respectively. A total of 20 ran-
dom subsamplings were performed for each. The resulting MM files 
were then subjected to DRACO analysis (parameters: --absWinLen 100 
--absWinOffset 1 --minBaseCoverage 2000 --minFilteredReads 2000 
--minPermutations 10 --maxPermutations 50 --firstEigengapShift 0.95 
--lookaheadEigengaps 1 --softClusteringIters 30 --softClusteringInits 
500 --softClusteringWeightModule 0.005). If at least one window 
overlapping the riboswitch was found to populate >1 conformation, 
the riboswitch was considered detected.

Comparison of DH5α versus TOP10 strains, 37 °C versus 10 °C 
and standard versus ATP-depleted conditions
Correlation between experiments (related to Supplementary Figs. 1c,d, 
5a, 10b and 16d) was calculated on the raw mutation frequencies of 
A/C bases in transcriptional units for which ≥50% of A/C bases had 
coverage ≥ 10,000× after removing outliers (raw reactivity > 0.1). 
The number of conformations populated by each base in the cov-
ered transcriptome (related to Figs. 1a, 2a and 4c,f) was determined 
by parsing DRACO’s JSON-formatted output files. As DRACO uses a 
sliding window approach, consecutive overlapping windows might 
be found to populate different numbers of conformations; in such 
cases, overlapping bases were assigned the highest number of con-
formations. Windows populating different numbers of conformations 
between 37 °C and 10 °C (related to Fig. 2b) or between standard and 
ATP-depleted conditions (related to Fig. 4g) were identified as fol-
lows. First, windows populating one or two or more conformations 
were extracted from DRACO’s JSON-formatted output files into BED 
format and overlapping windows were merged using the mergeBed 
tool of BEDTools85 version 2.31.0. Any portion of the windows populat-
ing one conformation overlapping with the windows populating two 
or more conformations was removed using BEDTools’ subtractBed. 
Then, windows populating one or two or more conformations com-
mon to both DH5α and TOP10 at either 37 °C or 10 °C or both replicate 
experiments in HEK293 cultured under standard or ATP-depleted 
conditions were identified by intersecting the corresponding sets from 
both experiments using BEDTools intersectBed. Only windows popu-
lating the same number of conformations in both DH5α and TOP10 
or in both HEK293 replicate experiments were retained. Lastly, com-
mon windows populating two or more conformations in both DH5α 
and TOP10 at 37 °C or in both HEK293 replicate experiments under 
standard conditions and one conformation in both DH5α and TOP10 
at 10 °C or in both HEK293 replicate experiments under ATP-depleted 
conditions (less than ensemble heterogeneity) or vice versa (greater 
than ensemble heterogeneity), as well as regions populating the same 
number of conformations in both strains or replicate experiments at 
both temperatures or culture conditions (no change), were identified 
by intersecting the windows set determined in the previous step using 
BEDTools intersectBed. Window coordinates were then intersected 
with gene coordinates to identify which genes contained windows 

showing differential ensemble heterogeneity between 37 °C and 10 °C 
or between standard and ATP-depleted conditions.

Translation efficiency analysis
Ribosome profiling and RNA-seq data for E. coli cells at 37 °C or shocked 
at 10 °C for 10 min were obtained from a previous study35 (GSE103421). 
Reads were aligned to the same transcriptome reference used for 
DMS-MaPseq analysis, using RNA Framework’s rf-map and Bowtie86 
version 1.3.1, allowing a maximum of to mapping positions (param-
eters: -ca3 CTGTAGGCACCATCAA -bnr -ow -bm 2 -bc 32000 -ba). After 
discarding all reads mapping to the rRNA operons, read counts for 
protein-coding genes containing windows showing differential het-
erogeneity between 37 °C and 10 °C as described above were calculated 
by intersecting CDS coordinates in BED format with the relevant BAM 
files using BEDTools intersectBed (parameter: -c). Only windows ≥ 50 nt 
(half of the window size used for DRACO analysis) were considered. 
For both Ribo-seq and RNA-seq data, per-gene reads per kilobase per 
million mapped reads (RPKMs) were calculated as follows:

RPKM = C
NL × 1,000,000

where C is the read count on the gene, N is the total number of reads 
mapped in the experiment and L is the length of the gene in kilobases. 
Translation efficiency for each gene (related to Fig. 3e) was then cal-
culated as follows:

Translation efficiency =
RPKMRibo−seq + 0.1
RPKMRNA−seq + 0.1

where 0.1 is a pseudo count added to avoid division by zero. Only genes 
expressed at ≥1 RPKM at both 37 °C and 10 °C were considered.

For HEK293, ribosome profiling and RNA-seq data were obtained 
from two previous studies59,87 (GSE112353 and GSE228010). Reads were 
first aligned to a reference including rRNAs, tRNAs and small nucleolar 
RNAs, using RNA Framework’s rf-map and Bowtie2 version 2.3.5.1. 
Unmapped reads were then aligned to the same transcriptome refer-
ence used for 5′UTR-MaP analysis and read counts for protein-coding 
genes containing windows showing differential heterogeneity between 
standard and ATP-depleted conditions described above were calcu-
lated by intersecting CDS coordinates in BED format with the rele-
vant BAM files. Only windows ≥ 45 nt (half of the window size used for 
DRACO analysis) were considered. Only genes expressed at ≥1 RPKM 
both under standard and ATP-depleted conditions were considered.

Comparison of regions populating one versus two or more 
conformations
Eight features were evaluated for regions populating one versus two 
or more conformations: A+C content, G+C content, median Shannon 
entropy, median unpaired probability, median reactivity, Gini index, 
median percentage conservation and Z score (related to Figs. 1b–g and 
4d,e and Supplementary Figs. 4, 6 and 7). For all analyses, only regions 
spanning at least half of the window size used for DRACO analysis 
(50 nt for E. coli, 45 nt for HEK293) were included. Furthermore, all 2+ 
regions were retained for this analysis (whether or not they populated 
the same number of conformations in both strains or replicate experi-
ments), provided that they populated two or more conformations in 
both strains (or replicate experiments). First, bulk reactivity profiles 
for both DH5α and TOP10 grown at 37 °C or HEK293 grown under 
standard conditions were obtained by normalizing the respective RC 
files as described above using RNA Framework’s rf-norm (parameters: 
-sm 4 -nm 3 -rb AC -mm 1 -n 1,000) and the resulting normalized XML 
reactivity files were combined using RNA Framework’s rf-combine. 
From these XML files, reactivity data for regions populating one or 
two or more conformations were extracted and used to calculate the 
median reactivity and Gini index distributions. Combined XML files 
were then passed to RNA Framework’s rf-fold to compute base-paring 
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probabilities and Shannon entropies (parameters: -sl 4.8 -in -0.8 -md  
600 -dp -sh for E. coli or -sl 4.6 -in -2 -md 600 -dp -sh for HEK293). 
Unpaired probabilities per base were calculated as follows:

1 −
J
∑
j=i

p(i, j)

where p(i,j) is the base-pairing probability between nucleotides i 
and j over all possible J partners. For unconstrained predictions, the 
same parameters were used with the addition of the -i parameter to 
ignore experimental reactivities. Distributions of folding free energy 
Z scores were calculated on the nucleotide sequences corresponding 
to the regions populating one or two or more conformations in the 
absence of any constraint using ViennaRNA. For Z-score calculation, 
the sequence of each region was shuffled 100 times while preserving 
dinucleotide frequencies and the corresponding folding free energies 
were predicted using RNAfold. The Z score for each region was then 
calculated as follows:

Z = △G − μ
σ

where ∆G is the folding free energy for the original sequence, while μ 
and σ are the average and s.d., respectively, of the folding free energies 
across the 100 shuffled sequences.

The same 1 and 2+ regions, as defined above, were used for all 
analyses, including translation efficiency (related to Fig. 4h,i and Sup-
plementary Figs. 5h and 10d) and gene ontology analyses. Gene ontol-
ogy was performed using DAVID88.

Sequence-level conservation analysis
To evaluate the conservation of regions populating one versus two or 
more conformations, a multiple-sequence alignment was computed 
using Mugsy89 version 1.2.3 and ten Gram-negative bacteria genomes: 
E. coli str. K-12 substr. MG1655 (GenBank U00096.3), S. enterica subsp. 
enterica serovar Typhimurium str. LT2 (GenBank AE006468.2),  
Shigella flexneri 2a str. 2457T (GenBank AE014073.1), Klebsiella pneu-
moniae subsp. pneumoniae HS11286 (GenBank CP003200.1), Yersinia 
pestis CO92 (GenBank AL590842.1), Enterobacter sp. 638 (GenBank 
CP000653.1), Serratia marcescens strain KS10 (GenBank CP027798.1), 
Pectobacterium carotovorum strain WPP14 (GenBank CP027798.1), 
Shigella dysenteriae strain SWHEFF_49 (GenBank CP055055.1) and 
Enterobacter cloacae isolate 1382 (GenBank OW968328.1). The result-
ing alignment was parsed to calculate the percentage conservation at 
each position with respect to the E. coli genome.

Reactivity profile reconstruction and structure modeling  
for high-confidence regions
High-confidence structurally heterogeneous regions for which the 
deconvolved reactivity profiles could be nonambiguously matched 
between DH5α and TOP10 or between HEK293 replicate experiments 
(average correlation of reactivity profiles ≥ 0.65) were extracted using 
RNA Framework’s rf-json2rc by including 20 extra bases on either side 
of the structure (parameters: -ec 1,000 -mom 0.35 -e 20 -cf 0.1 -i 0.1 
-mcm 0.65 -mcr 0.65). The tool processes DRACO’s JSON-formatted 
output files from two experiments, aggregating those regions show-
ing sufficient agreement between the deconvolved reactivity profiles 
across the two experiments and yielding two RC files containing the 
per-base coverage and mutations across the different conformations 
reconstructed by DRACO for the analyzed RNAs. The resulting RC 
files were then processed using RNA Framework’s rf-norm to yield 
normalized reactivity profiles (parameters: -sm 4 -nm 3 -rb AC -mm 1 
-n 100). Structure modeling was performed using the consensusFold 
utility (available from the repository https://github.com/dincarnato/
labtools), which leverages RNAalifold90 to aggregate multiple reac-
tivity profiles into a consensus secondary structure (parameters: -sl  

4.8 -in -0.8 -md 600 for E. coli or -sl 4.6 -in -2 -md 600 for HEK293). For 
the modeling of secondary structures under cold shock conditions 
an additional parameter (-t 10) was specified to set the folding tem-
perature to 10 °C.

Normalization of 5′UTR-MaP reactivity data
As 5′UTR-MaP selectively enriches 5′ UTR regions, which are intrin-
sically highly structured because of their high G+C content, tradi-
tional gene-level normalization of reactivities would lead to notable 
biases because of the low number of highly reactive bases. To address 
this issue, we adopted an experiment-level normalization approach. 
Briefly, bases covered across all experiments were sorted and values 
greater than 1.5× the interquartile range (IQR) + the 75th percentile 
were removed. After excluding these outliers, the next 10% of remain-
ing bases common to all experiments were averaged, yielding an 
experiment-level normalization factor. We implemented this approach 
in the rf-normfactor tool of RNA Framework (parameters: -sm 4 -nm 3 
-rb AC -mc 1,000). The resulting normalization factors were then passed 
to the rf-norm tool using the -nf parameter.

Covariation analysis
To evaluate the conservation of the identified E. coli structures, we 
implemented the evolutionary conservation analysis module of the 
DeConStruct framework, built on top of the cm-builder pipeline (avail-
able from the repository https://github.com/dincarnato/labtools) we 
previously introduced4,22 (which exploits Infernal91 version 1.1.3 and 
R-scape39,92 version 2.0.0.q), to be able to handle full bacterial genomes 
rather than just individual transcripts. For each predicted structure 
(filtering out those with a known match in Rfam93) a CM was first built 
using Infernal’s cmbuild and the sole E. coli sequence. The CM was then 
used to search a database of 7,598 representative archaeal and bacte-
rial genomes (and associated plasmids when present) from RefSeq to 
iteratively identify putative homologs. In its original implementation, 
cm-builder used an E-value-based approach to search in the database. 
This approach had two main limitations. Firstly, the E value for the 
identified matches was dependent on the size of the searched data-
base, potentially leading to different results with different database 
sizes. Secondly, it required the calibration of the CMs using Infernal’s 
cmcalibrate module, a computationally intensive task, which is not 
easily scalable to hundreds of candidates. To address these issues, we 
implemented a bit-score-based search. Briefly, to trick Infernal into 
thinking that a CM had been calibrated, a fake set of ECMLC, ECMGC, 
ECMLI and ECMGI field values was introduced into the CM. These 
fields are only used to determine the E value of a database search but 
they do not affect the bit score. Then, a decoy database was built by 
randomly extracting and reversing ~10% of the sequences from the 
original genome database. Infernal’s cmsearch was then used to search 
the CM against the decoy database. A noise threshold N was defined 
by taking the highest possible bit score returned by this search and 
by rounding it up to the nearest multiple of 5. If N < 20, then N was set 
to 20. The search was then repeated against the original database, 
retaining only those matches having bit score > N. Matches having 
<50% canonical base pairs and truncated hits covering <75% of the 
structure were discarded. The resulting set of candidate homologs 
was then realigned against the original CM using Infernal’s cmalign. 
The whole procedure was repeated a maximum of three times. At 
each iteration, N was increased by 10 and the alignment of candidate 
homologs was analyzed using R-scape’s average product correction 
(APC)-corrected G-test statistics and a relaxed E-value threshold of 0.1 
(to account for those structures falling within coding regions for which 
sequence variation might be ‘constrained’ by the underlying amino acid 
sequence). If the number of significantly covarying base pairs dropped 
with respect to the previous iteration (except for the first iteration), 
the procedure was stopped. The final alignment was then polished 
by discarding sequences with a length that was significantly different 
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from the majority of the sequences in the alignment. This was achieved 
by converting sequence lengths to Z scores and discarding sequences 
with abs(Z score) > 2 and length difference > 10% with respect to the 
average sequence length in the alignment (implemented in the stock-
holmPolish tool available from the repository https://github.com/din-
carnato/labtools). To further select only high-confidence alignments, 
we performed a stringent filtering by selecting alignments matching 
three criteria: (1) ≥25% of the helices showing helix-level covariation 
(R-scape’s Lancaster aggregated E value < 0.05); (2) ≥12.5% of the base 
pairs showing covariation (R-scape APC-corrected G-test statistic  
E value < 0.1); and (3) ≥5 base pairs showing covariation.

For human RNA structures, sequences of candidate struc-
tural homologs were directly extracted from multiz100way MAF 
files (https://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz-
100way/maf/) using the mafsInRegion tool of the kentUtils (available 
from the repository https://github.com/ENCODE-DCC/kentUtils) 
after lifting the identified structurally heterogeneous regions from 
transcriptome-level to genome-level coordinates using the transcrip-
tome2genome tool (available from the repository https://github.com/
dincarnato/labtools). Extracted MAF blocks were concatenated, gaps 
were removed and the resulting set of sequences was used as database 
for the cm-builder tool. This part of the analysis was implemented in the 
dbFromMAF tool (available as part of the DeConStruct pipeline from 
the repository https://github.com/dincarnato/papers). As this set of 
sequences represents a higher-confidence set as compared to the set of 
complete bacterial genomes used for the analysis of E. coli structures, 
two parameters were relaxed for the construction of alignments; at 
each iteration, the bit-score noise threshold (N) was increased by 5 
(rather than 10) and matches having <35% (rather than 50%) canonical 
base pairs were discarded. No polishing was performed on the output 
alignments and filtering was relaxed by selecting all structures hav-
ing at least three covarying base pairs (R-scape APC-corrected G-test 
statistic E value < 0.1) and two covarying helices (R-scape’s Lancaster 
aggregated E value < 0.05).

Design of conformation-stabilizing mutants
The mutant stabilizing the SLalt conformation of lpxP was designed 
manually by introducing point mutations in the 5′ half of the stem but 
taking care not to touch any nucleotide in the surroundings of the RBS 
residing on the 3′ half of the stem. Mutants stabilizing the different 
conformations of CKS2 and TXNL4A were automatically designed using 
the rf-mutate tool of RNA Framework. For this purpose, the program 
was modified to enable specifying a target structure. For example, to 
stabilize conformation A, this was provided as the target structure, 
while conformation B was provided as the wild-type structure, so 
that the program would design mutations minimizing the probability 
of forming conformation B while simultaneously maximizing the 
probability of forming conformation A (with a maximum tolerated 
base-pair distance of 25%). Mutations were designed in such a way that 
the underlying amino acid sequences of both the uORF and the main 
ORF were preserved.

Evaluation of energy barriers and fraction changed base pairs 
between conformations
Transition barriers were estimated on the set of structures predicted 
from structurally heterogeneous regions whose DRACO-deconvolved 
reactivity profiles could be nonambiguously matched between DH5α 
and TOP10 cells as described above. Estimation was performed using 
DrFindpath, a component of the DrTransformer package94. DrFindpath 
uses the Findpath heuristic95, which is implemented in the ViennaRNA 
library. The fraction of changed base pairs between conformations was 
calculated as follows:

F = 1 − C
c1 + c2 + C

where C is the number of base pairs common to both conformations and 
c1 and c2 are the numbers of base pairs unique to either conformation.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Sequencing data were deposited to the Gene Expression Omnibus 
database under accession number GSE247244. Raw MM files for analy-
sis with DRACO are available from Zenodo (https://doi.org/10.5281/
zenodo.10357457)96. Additional processed files (including the 
browsable set of conserved structurally heterogeneous regions) are 
available online (https://www.incarnatolab.com/datasets/Ensem-
bles_Borovska_2025.php). Source data are provided with this paper.

Code availability
The source codes of DRACO version 1.2, the cm-builder, filterMM, con-
sensusFold, transcriptome2genome and stockholmPolish utilities and 
the DeConStruct framework are freely available from GitHub under the 
GPLv3 license (https://github.com/dincarnato/draco, https://github.
com/dincarnato/labtools and https://github.com/dincarnato/papers).
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Extended Data Fig. 1 | Structure and conservation of the cspG RNA 
thermometer. (a) Secondary structure models of the 5′ UTR of cspG at 
37 °C and 10 °C, with overlaid in vitro DMS reactivities, along with reactivity 
profiles and base-pairing probabilities for both conformations. Reactivities 
are averaged across two independent experiments. (b) Structure models for 

the two conformations of the identified cspG RNA thermometer, inferred by 
phylogenetic analysis. Base-pairs showing significant covariation (as determined 
by R-scape) are boxed in dark green (E-value < 0.05). Helices showing helix-level 
covariation support (E-value < 0.05) are boxed in light green.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-025-02739-0

^^^^^ ^ ^^^^^^

^^^^^ ^ ^^^^^^

^^^^^ ^ ^^^^^^

S
O

O

O

O
CH3H3C

==

DMS

HO

HO

HO

^^^^^ ^ ^^^^^^
HO

^^^^^ ^ ^^^^^^
HO

^^^^^ ^ ^^^^^^
HO

HO

HO

HO

^^^^^ ^ ^^^^^^
HO

^^^^^ ^ ^^^^^^
HO

^^^^^ ^ ^^^^^^
HO

OH

OH

OH

OH

OH

OH

HO

HO

HO

^^^^^ ^ ^^^^^^
HO

^^^^^ ^ ^^^^^^
HO

^^^^^ ^ ^^^^^^
HO

OH

OH

OH

OH

OH

OH

OH

OH

OH

5’ cDNA

5’ cDNA

5’ cDNA

3’

3’

3’

HighLow

R
ea

ct
iv

ity

Position

Reactivity

C
ov

er
ag

e

In cell probing Poly(A) enrichment RNA fragmentation

DephosphorylationDecapping5’ Biotin-adapter ligation &
streptavidin-mediated capture

3’ adapter ligation Mutational profiling (MaP) RT PCR multiplexing, sequencing, data analysis

7-methylguanosine cap

5’ Biotin-adapter

DMS modification
2’,3’ cyclic phosphate
Phosphate

Streptavidin beads
3’ adapter

Legend

DMS-induced mutation

Extended Data Fig. 2 | Overview of the 5′UTR-MaP library preparation 
strategy. Cells are subjected to in vivo probing, after which poly(A)+ RNA is 
isolated and fragmented. Fragments are dephosphorylated to remove any 
endogenous 5′ phosphate and to resolve 2′-3′-cyclic phosphates generated by 

chemical fragmentation. Capped RNA fragments are decapped, leaving a  
5′ phosphate that can be used to ligate a biotinylated adapter. Ligated fragments 
are captured via streptavidin-coated beads, after which an adapter is ligated to 
the 3′ end, and library is prepared as per standard MaP protocol.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-025-02739-0

0.0
0.4
0.7

Reactivity
>1.0

G/U

M
ed

ia
n 

ce
ll’s

 m
ea

n 
flu

or
es

ce
nc

e 
(a

.u
)

EGFP
mCherry

U

G

C

G

G

G

U

G

C

G

G

G

C

G

G
G

A

C
C

G
G

A
U

U

U

C

G
U
C

C

G

U
G

G
G

C

C

C

G

G

G

G
G

C
G
G

C

G

G

G

G

G

C

C

G

G

G

G
A

G
U
G
A

G

G

G

G

C

C
G

G
CU

G

A
G

C
C

C
A

C C U
C

G

C

U
G

G

G

C

C

C

U

C

C

C

U

G

G

C
G

C

C

C

C

G

C

C

U

U

G

G

G
C

G
G

C

G

G

C

G

A

G
C

G
C

G
C
G
G

G
C

C

G

C

C A U
G

U
C
G
U

A
CAU

G

C

U

C

C

C

G

C

A

40

50

60

70

80

90

100

110 120

130

140

150

160

170

180

190

uORF

Main
ORF

U

G

C

G

G

G

U

G

C

G
G

G
CGGG

A
C
C

G
G

AU
U

U
C G

U
C

C
G U

G

G

G
C

C
C G

G
G

G
G

C

G
G

C
G

G
G

G

G
C

C
G

G
G

GA
G

U
G

A

G

G

G

G

C

C

G

G

C
U
G

A

G

C

C
C

A

C

C

U

C

G

C

U

G

G

G

C

C

C

U

C
C

C
U

G
G

C G
C

C
C

C
G

C
C

U U G
G

G
C

G
G

C

G G
C

G
A G

C

G
C

G
C

G
GG

C
C

G
C

C
A
U
G

U
C

GUACAU
G

C
U

C
C

C

G

C

A

C

C

U

G

C

A

40

50

60

70

80

90

100

110

120

130

140
150

160

170

180

190

Main
ORF

uORF

Conformation A
(41.5 ± 1.7%)

0.5
1.0
1.5

R
ea

ct
iv

ity

0.0
0.5
1.0

2.0

R
ea

ct
iv

ity

0.0

1.5

Conformation B
(58.5 ± 1.7%)

0.05
0.1 0.4 0.7

1.0

Base-pair
probability

R
GGRG Y

G R
C
C
R

A
U
G
U
C

GUACAUGCU
CC

G
C
A
Y
Y
U
R
C
A C

A
A
Y

GG
C
U
G
G

5´

G

R

R

Y

Y

Y

G
C
C
R
A U GU

C
G

UACA
U
G
C
U

C
C
G
C
A

5´

97%
90%
75%
50%

N 97%
N 90%
N 75%

E < 0.05 E < 0.05

Nucleotide
present

Nucleotide
identify

Base-pair
covariation

Helix-level
covariation

E < 0.1

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0Conformation A Conformation B

r = 0.93r = 0.85

Experiment #1

Ex
pe

rim
en

t #
2

a

b

c

0

500

1,000

1,500

2,000

2,500

WT

Stab
iliz

ed

co
nf.

B uO
RF

muta
ted

Extended Data Fig. 3 | Characterization of the TXNL4A uORF-regulating RNA 
structural switch. (a) Secondary structure models for the two conformations 
of the TXNL4A 5′ UTR as identified via ensemble deconvolution from targeted 
DMS-MaPseq analysis, with overlaid in vivo DMS reactivities, along with reactivity 
profiles and base-pairing probabilities for both conformations. Reactivities 
are averaged across the two replicate experiments. The scatter plots depict the 
correlation of base reactivities for the deconvolved conformations across the 
two replicate experiments. (b) Structure models for the two conformations of the 

TXNL4A 5′ UTR, inferred by phylogenetic analysis. Base-pairs showing significant 
covariation (as determined by R-scape) are boxed in dark green (E-value < 0.05) 
or purple (E-value < 0.1). Helices showing helix-level covariation support are 
boxed in light green (E-value < 0.05). (c) Histogram depicting the median of cell’s 
mean fluorescence in HEK293 cells expressing a dual-frame vector, harboring the 
5′ UTR of TXNL4A, either wild type, with the uORF start codon mutagenized from 
CUG to CCG, or mutagenized to stabilize conformation B. Error bars represent 
the standard deviation of 3 independent biological replicates.
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