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RNA secondary structures have proven essential for understanding the regulatory functions performed by
RNA such as microRNAs, bacterial small RNAs, or riboswitches. This success is in part due to the availabil-
ity of efficient computational methods for predicting RNA secondary structures. Recent advances focus on
dealing with the inherent uncertainty of prediction by considering the ensemble of possible structures
rather than the single most stable one. Moreover, the advent of high-throughput structural probing
has spurred the development of computational methods that incorporate such experimental data as aux-
iliary information.
� 2016 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Structured RNAs and RNA elements

1.1. General concepts

In every domain of life, cellular processes interpreting genetic
information require RNAs. For instance, RNAs prime DNA replica-
tion, induce gene silencing and activation via DNA (de)methyla-
tion, promote cross-talk of active gene loci, serve as templates
for protein synthesis, translate DNA code into peptides, enzymati-
cally catalyze formation of peptide bonds via peptidyl transferase
activity, inactivate transposable elements, and mediate target
specificity in post-transcriptional gene silencing.

RNAs fold back onto themselves by forming intra-molecular
base pairs. The resulting structures are composed of two funda-
mental building blocks: paired regions (mostly A-form helices),
and unpaired loops. Interaction partners such as proteins, small
ligands or other RNAs recognize specific structural motifs and
can trigger refolding, cleavage, and chemical modifications upon
binding.

Often, the target regions themselves must be unstructured, i.e.
in loop regions, or at most engaged in weak structures in order
to allow for interactions. Structured and unstructured regions
therefore often depend on each other [80].
1.2. MicroRNAs – small regulatory RNAs

The modes of function described so far are not mutually exclu-
sive. In fact, most RNAs or RNA based systems combine multiple
functions, as illustrated by microRNAs (miRNAs), which represent
a class of small noncoding RNAs (ncRNAs) found in plants and
metazoans (reviewed in [36]). They can induce post-
transcriptional gene silencing via an RNP named RISC (RNA
induced silencing complex), which in turn targets 3

0
UTRs of

mRNAs and leads to mRNA degradation or translational repression
[5]. RISC, which contains a well defined stable set of proteins, is
able to target thousands of different mRNAs and binding motifs,
because sequence specificity is mediated through the individual
miRNAs loaded into the complex – in evolutionary terms a simple
solution to increase the target range and add nodes to regulatory
networks.

The target sites on mRNAs must be single stranded, i.e. mostly
unstructured. Binding of the miRNA to the target can be considered
as an inter-molecular folding process. The resulting structures
together with specific RISC components (Ago proteins) finally
determine the fate of the mRNA.

While miRNAs are unstructured when loaded into RISC, during
biogenesis they reside in heavily structured precursors (pre-
miRNA). These stem-loop structures consist of helices and inter-
spersed loops (bulges and small interior loops, for definition see
Section 2) and are cleaved from even longer primary transcripts.
It remains unknown how cleavage sites are determined, but data
suggest that structural and/or resulting sterical features play a cru-
cial role.

Micro RNA biogenesis and microRNA-mediated gene silencing
via RISC are among the best studied RNA pathways. However, sev-
eral known unknowns remain to be addressed, most of which
might be solved by in-depth structural analysis, in silico, in vitro
as well as in vivo.
1.3. Riboswitches – regulatory RNA elements

In contrast to regulatory RNAs, structure elements are locally
stable structures representing functional domains within longer
RNA molecules, for instance the aminoacyl-transferase activity of
ribosomal rRNAs. They are also found in UTRs of protein coding
mRNAs, where they serve as protein binding sites or riboswitches.

Riboswitches are structure elements that bind small metabo-
lites in a concentration dependent manner and therefore serve as
environmental sensors. They are bistable, i.e. they can fold into
two alternative conformations depending on the binding of the
small ligand. The riboswitch therefore serves as a switch that turns
expression of a gene on or off, triggered by the binding of a ligand.

In bacteria riboswitches can control either transcription or
translation and often sense metabolites or substrates of their
respective gene products. Thus, they provide an easy mechanism
to construct autoregulatory feed-back loops [70]. While this kind
of regulation could also be achieved using protein based regulation
through transcription factors, the RNA based regulation by ribos-
witches is able to respond much more quickly to environmental
changes.

Understanding the mechanisms of RNA based regulation
requires good knowledge of the structure of the RNAs involved.
In the next sections we will therefore introduce algorithms for
the most common tasks related to RNA secondary structure,
including predicting the structure of a single RNA and its equilib-
rium properties, predicting the consensus structure for a set of
related RNAs, as well as interactions between RNAs, and explore
how RNAs refold over time. Finally, we review methods that com-
bine data from probing experiments with in silico prediction to
achieve higher quality predictions.

2. Secondary structure prediction

The most common approach to treat RNA structures algorithmi-
cally, is to reduce them to the set of base pairs, the so-called sec-
ondary structure, thereby abstracting from the actual spatial
arrangement of nucleotides. For a valid secondary structure, we
require that each nucleotide i interacts with at most one other
nucleotide j to form a base pair ði; jÞ. We only consider canonical
base pairs, i.e. the Watson–Crick pairs AU, UA, CG, and GC, as well
as the so-called wobble pairs GU and UG. Moreover, we usually
exclude pseudo-knots, i.e. crossing pairs ði; jÞ and ðk; lÞ where
i < k < j < l.

Each base pair ði; jÞ in a secondary structure closes a loop L,
thereby directly enclosing unpaired nucleotides u and, possibly,
further base pairs ðp; qÞ. Here, directly means that there is no other
base pair ðk; lÞ with i < k < l < j such that k < u < l, or
k < p < q < l. With these requirements, the number of directly
enclosed unpaired nucleotides constitute the length, or size of L,
while the number of directly enclosed base pairs and the enclosing
pair determine its degree. Below, we refer to loops of degree 1 as
hairpins, loops of degree 2 as interior loops, and loops with degree
> 2 as multibranch loops.

Computational prediction of RNA secondary structures has been
actively researched for more than four decades, and is mainly dri-
ven by physics based models [117,116,124,82,145]. The major
assumption behind these approaches is that a good estimate of
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the overall stability, the free energy EðsÞ of an RNA secondary struc-
ture s, can be obtained from the additive contributions EL of its
individual loops L

EðsÞ �
X

L2s
EL: ð1Þ

In this model, the energy contribution of a base pair in a helix
depends on the identity of the two adjacent pairs, giving rise to
the name Nearest Neighbor Energy Model. Great effort has been
made to experimentally determine free energy parameters from
melting experiments for different types of loops with a large vari-
ety of sequence compositions [116,30,73,120]. Many small interior
loops with a length of up to four or five, for instance, are exhaus-
tively tabulated in the energy parameter sets of modern prediction
programs, as are a handful of extraordinarily stable hairpins, such
as tetra-loops. Contributions of larger loops, and those where no
explicit experimental data is available are extrapolated. For
multi-loops, especially few melting experiments are available.
For reasons of computational efficiency they are modeled by a sim-
ple linear combination of loop length and degree, although some
attempt has been made to develop more sophisticated multi-loop
energies that, e.g., take into account loop asymmetry [75]. Never-
theless, this can be regarded the weakest part of the nearest neigh-
bor model.

In recent years several methods emerged, which augment or
even replace physics-based models through trained parameters
[23,3,4,138]. Instead of relying on experimental measurements,
these methods require large sets of RNAs with known structure
as training data, making them susceptible to overfitting [94].

In nature, RNA structures are not limited to non-crossing base-
pairs. In fact, several known structural motifs contain pseudo-
knots. Although pseudo-knots can be important structural
elements in various functional RNAs [103], considering all possible
pseudo-knots in structure prediction has been shown to be NP-
hard [69], and is therefore computationally infeasible. For the sake
of reducing computational complexity, most algorithms neglect
pseudo-knots. Beginning with the work of Tabaska et al. [109],
and Rivas and Eddy [93], several algorithms have been developed
that reduce the computational complexity by limiting the predic-
tions to certain pseudo-knots classes. However, even today
pseudo-knot aware secondary structure prediction suffers from
our poor knowledge of free energies for these special kinds of
structure motifs. Recent approaches towards tertiary structure pre-
diction that involve so-called extended secondary structures
[60,84,143], and the incorporation of higher-order structure
motifs, such as G-quadruplexes, into secondary structure predic-
tion algorithms [63], will also be neglected in this brief overview
focusing on pseudo-knot free secondary structure prediction
approaches.
2.1. Free energy minimization

The simplest type of structure prediction aims to present the
user a single ‘optimal’ structure. The most commonly used opti-
mality criterion is the minimum free energy (MFE), since, accord-
ing to thermodynamics, the MFE structure is not only the most
stable, but also the most probable one in thermodynamic
equilibrium.

The number of possible secondary structures a particular RNA
can adopt grows exponentially with its sequence length [124]
and it is thus generally unfeasible to enumerate all of them in order
to assign stability scores and select the best candidate. Luckily, the
problem can be solved efficiently by a technique called dynamic
programming (DP), which recursively builds the optimal solution
from solutions of smaller sub-problems. This is possible, since for
pseudo-knot free structures each base pair divides the structure
into two independent parts, inside and outside of the base pair.

The first DP algorithm to compute the MFE structure of an RNA,
was published in 1981 by Zuker and Stiegler [145], about a decade
after the first attempts to predict secondary structures using
experimentally determined loop energy contributions. For
sequences of length n, the Zuker algorithm has an asymptotic time
and memory complexity of Oðn3Þ, and Oðn2Þ, respectively. In other
words, memory grows quadratic and computation time cubic with
sequence length. An full description of the algorithm and graphical
illustration of the recursion can be found e.g. in Bompfünewerer
et al. [11].

2.1.1. Prediction accuracy
Structure predictions are generally far from perfect. For moder-

ately long RNAs of up to about 500 nt, one can expect some 70% of
predicted base pairs to be correct [73], a number that can fall as
low as 40% for longer RNAs [24]. The reasons for limited accuracy
are multifold, including effects such as simplifications in the
energy model, inaccuracies of parameters, ignoring the effect of
binding to ions (such as Mg2+), proteins and other ligands, as well
non-equilibrium states of the RNA. Fundamentally, the exponential
growth of the number of possible structures means that even very
small errors in the model can have strong effects. Many variants to
the basic folding algorithms have therefore been developed chiefly
to deal with limited accuracy.

2.1.2. Suboptimal structures
A straightforward way to deal with uncertainty in structure pre-

diction is to generate a set of plausible structures instead of a sin-
gle optimal one. The first approach to suboptimal structure was to
produce a small set of (hopefully) representative structures that
are optimal given that one base pair is enforced. This method
was suggested independently by Steger et al. [104] and Zuker
[144], and made popular by the program mfold [144]. A different,
more exhaustive but computationally more expensive method was
introduced in RNAsubopt [136], which enumerates all secondary
structures within an energy increment d from the MFE.

2.2. The thermodynamic ensemble of structures

The probability of a secondary structure s in equilibrium follows
the laws of thermodynamics, specifically the Boltzmann
distribution:

pðsÞ / e�EðsÞ=RT ð2Þ
where EðsÞ is the free energy of the structure, R the gas constant and
T the thermodynamic temperature of the system. Given that the
right-hand side of (2) can be easily computed for a particular struc-
ture s, it is straightforward to obtain the partition function Z by
summing over all possible structures:

Z ¼
X

s

e�EðsÞ=RT ð3Þ

The latter can then be used as the normalization factor for
obtaining the equilibrium probability of a secondary structure s

pðsÞ ¼ e�EðsÞ=RT

Z
ð4Þ

Eq. 3 is impractical, since it requires summing over all possible
structures. In 1990, McCaskill [76] realized that the problem can be
solved by a variant of the DP recursions for MFE prediction. The
essential point lies in using a unique decomposition of the sec-
ondary structure space, ensuring that no structure is counted
twice. This paved the way to apply a broad variety of statistical
methods from thermodynamics to RNA secondary structures, such
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as the computation of base pair probabilities [76] and statistical
sampling of secondary structures according to their equilibrium
probabilities [19]. However, the first practical implementation of
the partition function and base pair probability computations that
could be applied to RNAs of reasonable size became available in
1994 with the RNAfold program [44].
2.2.1. Accessibility
An example for an important statistical property that can be

derived from the partition function is the accessibility of a region
along the RNA, such as a binding motifs. In bacteria, for instance,
translation is initiated upon binding of the ribosome to the
Shine-Dalgarno sequence. There are several RNAs that control gene
expression by differentially sequestering this motif through strong
secondary structure formation, thus making it inaccessible for the
ribosome. Furthermore, trans-acting RNAs such as miRNAs, sRNA,
or siRNAs, but also proteins, and other ligands may bind specifi-
cally to single stranded regions to control the RNAs function As
such, computing the accessibility of binding motifs is crucial for
detection of potential RNA-RNA interaction targets and RNA-
ligand binding.

Accessibility can be quantified as the probability that a region
i . . . j on an RNA is single stranded. This is equivalent the free
energy needed to force the region to be single stranded, since
DGopen ¼ �RT lnPðunpairedÞ. First attempts to compute accessibil-
ities were based on sampling [19], which however introduces sam-
pling errors for longer regions. Mückstein et al. [81] introduced an
exact (but still inefficient) computation of accessibilities via the
partition function, while Bernhart et al. [9] showed that the acces-
sibilities of all intervals of an RNA can be computed in Oðn3Þ time,
i.e. the same complexity as simple MFE folding. This enables exact
computation of accessibilities and opening free energies in short
time for RNAs of reasonable length.
2.3. Reliability, optimality, and prediction performance

An important approach to deal with uncertainty in prediction, is
to provide reliability information that informs the user how trust-
worthy a prediction (or part of a prediction) is. Several such relia-
bility measures can be conveniently derived from the partition
function and base pair probabilities.
2.3.1. Ensemble diversity
A simple yet powerful measure for the diversity of secondary

structure ensembles is the average distance hdi of two structures
drawn from the Boltzmann ensemble. The simplest distance mea-
sure dðs; tÞ between two structures s and t is the base pair distance
which counts the number of pairs present in one, but not both
structures. Using the base pair distance, the average hdi can be
expressed in terms of base pair probabilities pij.

hdi ¼
X

s;t

pðsÞpðtÞdðs; tÞ ¼
X

i;j

pijð1� pijÞ ð5Þ

Likewise, the expected distance hdðsÞi of a particular structure s
to the entire ensemble can be computed

hdðsÞi ¼
X

ði;jÞ2s
ð1� pijÞ þ

X

ði;jÞRs
pij ð6Þ

Both measures provide reasonable information to which extent
the ensemble is dominated by single structures, or whether there
exist alternative low free energy structures. A scaling factor of 1

n

can be used for both measures in order to compare RNAs of differ-
ent lengths.
2.3.2. Positional entropy
Reliability can also be measured locally for each nucleotide. The

positional entropy SðiÞ is a measure that captures whether a partic-
ular nucleotide i is found mainly in the same configuration, paired
or unpaired.

SðiÞ ¼ �
X

k

piklog2pik � qilog2qi ð7Þ

where qi ¼ 1�P
kpik is the probability that nucleotide i is unpaired.

The positional entropy is 0 for a nucleotide that is always unpaired
or always paired with the same partner. Thus, positions with low
entropy are predicted with high confidence.

2.3.3. Ensemble centroids
Even when only a single optimal structure is desired, the MFE is

not the only choice available. In probabilistic terms, the MFE sim-
ply represents the most likely structure in the ensemble. However,
other optimality criteria exist and could yield structure more rep-
resentative of the ensemble. One idea for such a representative is
the centroid structure sc . Formally, the centroid of an ensemble X
is the structure that minimizes the weighted average distance to
all other structures:

sc ¼ argmin
s

hdðsÞi ¼
X

t2X
pðtÞdðs; tÞ ð8Þ

The construction of sc becomes trivial when the distance
between structures is measured in terms of the base pairs distance.
In this case, sc simply consists of all base pairs with pij > 0:5. Note,
that for very diverse ensembles, it may well be that no pair has
probability > 0:5 and thus the centroid structure contains no base
pairs. For such diverse ensembles, a possibility is to first subdivide
X into clusters and compute a centroid for each cluster separately
[17]. The latter approach, however, relies again on sampling.

2.3.4. Maximizing the expected accuracy
Another type of optimal representative is the so called maxi-

mum expected accuracy (MEA) structure. Suppose, we define the
accuracy of a structure as the number of correct base pairs. The
expected accuracy is then EAðsÞ ¼ P

ði;jÞ2spij, and the structure max-
imizing the expected accuracy is

sMEA ¼ argmax
s

EAðsÞ ð9Þ

In order to avoid overpredicting base pairs, a more general form
for the expected accuracy is commonly used that also accounts for
the single-stranded (SS) positions in s:

EAðsÞ ¼
X

ði;jÞ2s
2cpij þ

X

i2SS
qi: ð10Þ

Again, qi is the probability that nucleotide i is unpaired, and c is
a weighting factor that balances between paired and unpaired
positions. A simplified version of the MFE prediction DP algorithm
[23] can be applied to efficiently solve 9.

As an example to emphasize the variety in selection of sec-
ondary structure representatives for different prediction methods,
we depict their results for the 57 nt long spliced leader RNA of
Leptomonas collosoma [59] in Fig. 1.

2.3.5. Global and local secondary structures
Discovery of novel functional RNAs, and putative targets for

RNA-RNA interactions based on motif accessibilities require fast
and efficient algorithms for genome-wide applications. For such
purposes, variations of the MFE and partition function algorithm
can be applied, that limit the maximum base pair span along the
backbone of the RNA to a certain number L. Consequently, the
asymptotic time and memory complexity for MFE prediction and



Fig. 1. Secondary structure predictions for the spliced leader RNA from Leptomonas collosoma [59]. Displayed are secondary structures predicted by various methods, such as
MFE, ensemble centroid, MEA structure, as well as suboptimal structures obtained from stochastic backtracking (marked by S), and the 5 best suboptimals sensu Zuker
(marked by Z), all implemented in the programs RNAfold, and RNAsubopt of the ViennaRNA Package [44,64]. To account for their respective pairwise base pair distance, a
hierarchical cluster tree is shown. Furthermore, equilibrium base pair probabilities are shown in the upper triangle of the respective dot-plot. The lower triangle displays the
base pairs of the MFE structure.
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partition function computation becomes Oðn � L2Þ [45,7]. As such,
this approach is applicable to genome-wide surveys not only for
bacteria, but even for chromosome lengths found in the human
genome.

2.4. Consensus structures

An important strategy for improving accuracy is to use multiple
homologous sequences for the prediction. In the most common
type of approach one starts from an alignment of several homolo-
gous sequences and asks for a consensus structure, i.e. the optimal
structure that can be adopted by all sequences. The best
known representatives of this approach are Pfold [55,106] and
RNAalifold [42,8]. Pfold is an SCFG based method that also
explicitly uses a phylogenetic tree and a substitution model for
unpaired and paired positions. RNAalifold treats the alignment
as a generalized sequence that can be folded by a standard energy
directed folding algorithm where the energy function consists of
averaged nearest neighbor energies as well as a covariance term.
Several other variants of the approach exist. McCaskill-MEA

[53], for example superimposes the base pairing probabilities of
all sequences using the alignment and runs an MEA algorithm on
these averaged pair probabilities. PETfold [97], formally inte-
grates both energy-based and evolution-based approaches to pre-
dict the folding of multiple aligned RNA sequences. A slightly
different view on the problem is adopted by Turbofold [38].
Rather than predicting a consensus structure, it predicts individual
structures for each sequence guided by the pair probabilities of all
other sequences in the set. The predictions can be refined itera-
tively by repeating this cycle several times.

All alignment based structure prediction methods are limited
by the quality of the alignment. In practice, conventional sequence
alignments tend work well for sequences with pairwise identities
above 80%, while at identities below 50% the ability to predict con-
sensus structures is severely limited by alignment errors. Structure
based alignments could help, but are problematic as we don’t
know the structures of our RNAs yet.

As proposed already in 1985 by Sankoff [96], the most princi-
pled approach would be to determine the optimal alignment and
structure simultaneously. Unfortunately, the Sankoff algorithm is
computationally very expensive with a time complexity of Oðn6Þ
already for two sequences of length n. Nevertheless, a number of
practically useful implementations exist today, all of which use
heuristics to restrict the search space and thus reduce time and/
or space complexity. Restricting the alignments search space was
first demonstrated by Dynalign [74], which limits the difference
in length of aligned subsequences to a maximum value M resulting
in a OðM3n3Þ algorithm. Restricting the space of allowed structures
was pioneered by the pmcomp and pmmulti tools [41] which pre-
compute pair probabilities for each sequence and remove low
probability base pairs resulting in a run time of Oðn4Þ. The idea
was extended in LocARNA [132,130] to also reduce the memory
consumption from quartic to quadratic. RAF [22] restricts both
structure and alignment search space to achieve quadratic run
time. The recent SPARSE [131] method achieves quadratic run
time even without sequence-based heuristics. While most of the
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above methods build on energy directed folding, pair stochastic
context free grammars (pairSCFG) are used e.g. by Stemloc [46]
or CONSAN [25].

Some Sankoff-like algorithms, such as LocARNA, Stemloc or
FoldAlign [108], also allow to compute local structural align-
ments. Also, multiple structural alignments can be obtained by fol-
lowing the same progressive pairwise alignment strategy that is
commonly used for multiple sequence alignments. pmmulti and
later LocARNA, RAF, Murlet [54], and FoldalignM [118] imple-
ment such a scheme.

A quite different approach is to apply an alignment-free strat-
egy that scales essentially linearly in the number of sequences.
RNAcast [89] is based on a coarse grained representation of RNA
structure, called abstract shape. It enumerates near-optimal RNA
shapes for each sequence and selects the best abstract shape com-
mon to all sequences. For each sequence, the thermodynamically
best structure which has this common shape is identified.
2.5. RNA-RNA interactions

A natural extension of folding algorithms is to consider the
interaction between two or more RNAs. This is of particular inter-
est, since most regulatory RNAs work through interaction with an
RNA target. A very fast tool to extract potential interaction sites
between two RNAs is GUUGle [33]. However, this tool does not
account for the binding energy between the two strands. The sim-
plest (and fastest) physics based methods, such as RNAhybrid

[91], RNAduplex compute the hybridization energy between two
RNAs using the nearest neighbor model, while RNAplex [111]
and RISearch [127] achieve further speed up by simplifying the
energy model. Still, this neglects that inter-molecular structure
always competes with intra-molecular structure formation. A
straightforward way to view RNA-RNA hybridization is to assume
a two step process, first intra-molecular structure has to opened
in order generate single stranded regions that can then hybridize.
The total free energy change is thus given by the sum of a (positive)
opening energy and a (negative) hybridization energy. Opening
energies can be computed in accessibility predictions, as described
above. The approach is used e.g. in RNAup [81] and IntARNA [13], a
fast approximate version is available in newer versions of RNAplex
[110].

The above methods limit the search to a single interacting
region. In contrast, RNAcofold [44,10], proceeds by artificially
linking the two interacting RNAs, and running a standard folding
algorithm, modified to correctly treat the loop containing the lin-
ker element. In this case, the search space is limited to structures
that are pseudo-knot free after linking, thus excluding any interac-
tion of an unstructured region with a loop, most importantly loop-
loop interactions such as kissing hairpins.

Some restriction of the search space is indeed necessary, since
the general RNA-RNA interaction problem is NP hard [1]. A number
of works have tried to allow a broader set of interaction structures
[86,1,48,14]. Because of the high computational cost of Oðn3m3Þ
these methods are less frequently used. A generalization to arbi-
trary numbers of interacting nucleic acid sequences was proposed
by Dirks et al. [21], and is implemented as part of the NUPACK suite
[137].
2.6. Kinetic folding of RNA

While thermodynamic modeling allows for detailed investiga-
tion of equilibrium properties of RNA, many biological processes
are governed by non-equilibrium processes, e.g. long-lived folding
intermediates resulting from stable helices. Unfortunately, the
number of methods that explicitly model folding dynamics is still
limited, moreover these methods are generally much more compu-
tationally demanding than the DP algorithms for equilibrium fold-
ing. In the following we summarize some of the available
approaches. For a more comprehensive review see, e.g., [28].

Biopolymer folding can be viewed as walk on an energy land-
scape. Formally, such a landscape consists of a finite state space
of structures X, an function EðxÞ that assigns an energy to each state
x 2 X, and a move set that describes which states are connected by
elementary transitions. Each possible move x ! y is associated
with a rate kyx. For RNA, the simplest move set consists of opening
or closing of a single base pair.

Folding dynamics can then be modeled by a continuous-time
Markov process based on a master equation which describes the
change in state probabilities PtðxÞ to see state x at time t

dPtðxÞ
dt

¼
X

y–x

½PtðyÞkxy � PtðxÞkyx� ð11Þ

Solving Eq. 11 directly is impractical for anything except toy
examples, since the dimension of the rate matrix is equal to the
number of possible structures. One possibility to address this
issues is to perform stochastic simulations of RNA folding using a
Monte Carlo method. This approach is taken e.g. by Kinfold

[27] and KineFold [50]. While the outcome of this method can
be regarded as a gold standard, computing and analyzing a large
number of trajectories can be time consuming and tedious. An
alternative approach is available through direct investigation of
the energy landscape in terms of local minima, energy barriers
and transition rates, as done by the barriers program [29]. The
local minima can be used as the basis for a coarse graining, reduc-
ing the number of states to a few hundred or thousand, thus allow-
ing for direct numerical integration of Eq. 11 [133].

Since barriers relies on an exhaustive enumeration of low
energy structures, it is in practice applicable only to RNAs of less
than 100 nt. Recently, a number of heuristic approaches have been
reported that attempt to raise this limit based on flooding tech-
niques [134,71] or sampling of local minima [113,114,56].

Another important, yet often neglected, aspect is the fact that
RNA structure is formed already during its synthesis, i.e. it folds
back on itself co-transcriptionally. Co-transcriptional folding is
fairly easy to implement in simulation approaches [35,27,50]. In
the landscape view, co-transcriptional folding induces a landscape
that varies over time. A framework to deal with such scenarios has
been presented in [43]. Finally, methods such as Kinwalker [32]
attempt to construct a single, most likely, folding trajectory for
the growing RNA chain. While this introduces fairly drastic approx-
imations it can be applied to RNAs up to � 1500 nt length.
3. Guiding RNA secondary structure prediction with
experimental data

3.1. Experimental approaches

Experimental technologies to elucidate RNA structure by means
of chemical and enzymatic probing were established long before
the first computational approaches toward RNA structure predic-
tion have become available [105]. Ribonucleases (RNase) are speci-
fic at recognizing single-stranded (ss) or double stranded (ds) RNA
regions and modify them by adding functional groups or by cleav-
ing them at their recognition sites. Treated RNAs are then analyzed
on sequencing gels in order to characterize sites of modification or
cleavage.

While the first chemical probing workflows based on 1-
cyclohexyl-3

0
-(2-morpholinoethyl) carbodiimide (CMCT) [79,85]

and lead(II) probing [34,62] have been available for decades, more
recent approaches including protocols based on hydroxyl radicals
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[119], inline probing [101,90], kethoxal [12], dimethyl sulfate
(DMS) [140,126,15] and selective 2

0
-hydroxyl acylation analyzed

by primer extension (SHAPE) [78,129] have become available.
Chemical probes bind single-stranded nucleotides and hence

allow for fine-grained experimental elucidation of RNA secondary
and tertiary structure. Several chemical probing chemistries, each
targeting distinct regions of nucleotides in a specific manner have
been described [125]. SHAPE reagents, for example, query the
backbone by acylating the ribose 2

0
-hydroxyl group of flexible

nucleotides, thereby forming 2
0
-O-ester adducts which cause sub-

sequent reverse transcription to terminate at the site of modifica-
tion. Single stranded or conformationally unconstrained RNA
regions show high 2

0
-hydroxyl reactivity, thus designating them

as a primary targets to measure the dynamics of local RNA
structure.

3.2. High-throughput RNA structure probing

With the advent of novel genome-wide sequencing technolo-
gies and the availability of whole transcriptome data for various
model and non-model organisms came demand for reliable,
large-scale RNA structure prediction methods. It only took the sci-
entific community a couple of years to come up with first in vitro
approaches for high-throughput transcriptome-wide RNA probing,
where next-generation sequencing (NGS) technologies are
employed for readout instead of gel or capillary electrophoresis.
Parallel analysis of RNA structure (PARS) [51], parallel analysis of
RNA structures with temperature elevation (PARTE) [122], frag-
mentation sequencing (Frag-seq) [121] and ss/dsRNA-seq [142]
form a class of experimental approaches that combine RNase treat-
ment with NGS. The chemical inference of RNA followed by mas-
sive sequencing (CIRS-seq) [49], multiplexed accessibility
probing-sequencing (MAP-seq) [98] and chemical modification-
sequencing (ChemMod-seq) [40] methods employ CMCT and
DMS probing, whereas hydroxyl radicals are used within the
hydroxyl radical footprinting-sequencing (HRF-seq) method [52]
in the context of RNA tertiary structure analysis. Combination of
SHAPE chemical probing with NGS (SHAPE-seq) [68,6,66] provides
highly reproducible reactivity data over a wide rage of RNA struc-
tural contexts without apparent biases.

Large-scale de novo identification of RNA functional motifs has
recently become accessible through the SHAPE-MaP approach
[99,100], where chemically modified sites are quantified in a single
direct step by modification in the RNA backbone. The method
makes use of the fact that non-complementary nucleotides are
included into the newly synthesized cDNA during reverse tran-
scription, thus documenting qualitative and quantitative informa-
tion of SHAPE adducts in a SHAPE-MaP. Similarly, the RNA
interacting groups mutational profiling method (RING-MaP) [47]
employs DMS treatment followed by special buffer conditions that
allow read-through at positions of DMS modification in combina-
tion with incorporation of non-complementary nucleotides.

While both classical gel-based and high-throughput probing
approaches have greatly improved our understanding of RNA
structure, some caveats in the experimental setup require thor-
ough consideration. The effectiveness of the probing agent can be
influenced by features other than RNA secondary structure, such
as solvent accessibility. In this regard, what is probed is not exclu-
sively secondary structure but to some extent tertiary and even
quaternary interactions. Considering the size of probing agents,
this problem can be expected to be more pronounced with enzy-
matic digestion than chemical probing assays, since bulky enzymes
may not be able to reach all parts of the RNA due to steric
hindrance.

Another issue is that RNA is typically extracted from its cellular
environment for in vitro probing assays, sometimes combined with
de- and re-naturing steps, and often devoid of any RNA-binding
proteins or other factors that influence structure formation. As a
consequence, the probed structure may not always be identical
to the native structure.

3.3. RNA structure probing in vivo

An increasing number of studies have tried to address these
shortcomings by probing RNA in vivo. This allows to interrogate
RNA structure in a native environment under the influence of var-
ious cellular processes such as transcription, splicing, binding of
small molecules and proteins [128]. Although classical DMS prob-
ing in vivo has been available for several years [126,61,141,140],
high-throughput variants have been reported recently, including
Structure-seq [20,18], DMS-seq [95] and Mod-seq [112]. A detailed
comparison of these methods, along with computational proce-
dures for data analysis is available in [58]. In vivo SHAPE probing
has been reported for abundant [102,77] and low-abundant [57]
transcripts.

All methods mentioned so far allow researchers to determine to
what extent specific nucleotides are paired, however they do not
reveal pairing partners. To address this problem, a novel method
for resolving RNA structure by proximity ligation has recently been
described [88]. Here, pairs of interacting RNA regions are ligated
after initial RNase digestion, thus forming chimeric molecules of
RNA sequences that were initially forming secondary structure.
Subsequent high-throughput sequencing and quantification of
the relative abundance of specific intramolecular ligation junctions
provides a decent picture of short- and long-range interactions of
RNA secondary structure.

3.4. Combining experimental data with RNA secondary structure
prediction

As many RNA structure probing methods became a mainstream
technology, the demand for efficient and precise methods to com-
bine them with computational methods in RNA structure determi-
nation is evident. Chemical probing, such as SHAPE, or DMS,
usually yields per-nucleotide reactivities that, to some extent,
reflect the structural context of a nucleotide. These reactivities
are then used to either guide in silico RNA structure prediction
methods directly, or determine which representatives fit the
experiments best. Today, several approaches to incorporate chem-
ical probing data into thermodynamics-based computational tools
have been suggested [31]. Available programs that allow for prob-
ing data guided structure prediction include Fold of the
RNAstructure package [92], the MC-Fold/ MC-Sym [84] pipeline,
RNAsc [139], RNApbfold [123], SeqFold [83], and Struc-

tureFold [115]. A historic overview of RNA structure prediction
methods with, and without the possibility to incorporate probing
data is shown in Fig. 2. Below, we will review current concepts
of probing data guided structure prediction.

3.4.1. RNA folding with hard and soft constraints
Historically, the first attempts to guide RNA structure predic-

tion based on prior knowledge, such as experimental probing data
or covariation within homologous sequences, were based on so-
called hard constraints. These constraints restrict the folding space
on the level of the generating function, e.g. through exclusion or
enforcement of specific base pairs [145,44,72]. However, experi-
mental data usually comes with some amount of uncertainty, that
easily translate into errors in such binary restraints. Unfortunately,
for hard constraints, even small errors in the input easily lead to
entirely wrong predictions. To overcome issues with ambiguous
data, more elaborate approaches use soft constraints that instead
target the energy evaluation of loop motifs through additional



Fig. 2. History of methods for RNA structure prediction from single sequence data. Upper panel: guided structure prediction using high-throughput probing data. Lower
panel: major algorithms and implementations of the past decades. For details about individual approaches and a more comprehensive historical overview of other structure
prediction methods see text.
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pseudo free energy terms [73,42,8,39]. The transformation of
chemical footprinting data into soft constraints for secondary
structure prediction has only been developed recently, mainly dri-
ven by the advances in (high-throughput) SHAPE experiments.

3.4.2. Directly derived pseudo free energies
In 2009, [16] were the first to pick up the observation that

SHAPE reactivities are roughly inversely proportional to the prob-
ability that a nucleotide forms a canonical base pair [78]. There-
fore, their linear ansatz directly converts the SHAPE reactivity
rSðiÞ of each nucleotide i into a pseudo free energy term

D GSðiÞ ¼ m logðrSðiÞ þ 1Þ þ b: ð12Þ
In the prediction algorithm, these contributions are then

applied to each of the four nucleotides involved in a base pair
stack. The idea is to penalize the formation of stacked pairs when-
ever high reactivity values from the experiment suggest that these
nucleotides should be unpaired. The intercept b, and the slope m
are then carefully adjusted in such a way, that low reactivity val-
ued positions receive little penalty, while those with high reactiv-
ity values are penalized a lot. Latest parameters for this pseudo free
energy term are m ¼ 1:8, and b ¼ �0:6 [37], but several
parametrizations that sometimes differ substantially can be found
in recent literature, e.g. in [87,67]. Because consecutive base pair
stacks in a helix are evaluated for two adjacent pairs at a time, pair-
ing nucleotides inside a helix are penalized twice, compared to
those at the ends of a helix. Energy evaluations of any of the
remaining loop motifs remain unchanged, even if the motif is in
disagreement with experimental data.

3.4.3. Probing data and pairing probabilities
While the above ad hoc conversion of SHAPE reactivities into

pseudo free energies has no direct physical justification, later
approaches to incorporate SHAPE reactivities first convert them
into likelihoods to be paired, or unpaired. Subsequently, the corre-
sponding pseudo energies are computed from these probabilities.
Thus, the actual probing data is detached from the pseudo energy
conversions, and different methods of probability estimation from
probing data may be applied. Consequently, this ansatz is applica-
ble to other probing methods, such as DMS, or PARS, as well.

However, the conversion of probing data into probabilities to be
paired, or unpaired is not trivial since SHAPE reactivities, for
instance, do not distinguish paired from unpaired positions unam-
biguously. In fact, the distributions of reactivities for unpaired and
paired positions have a rather large overlap [107]. To account for
this ambiguity, Cordero et al. [15] use a log-likelihood ratio of a
base being unpaired versus paired to derive a pseudo energy
potential. Eddy [26] suggested to use conditional probabilities
PðrSðiÞ j piÞ to observe a reactivity rSðiÞ given nucleotide i is in a
particular context pi. These probability distributions are in turn
estimated from probing experiments on known structures. Finding
the structure p̂ that maximizes the posterior probability Pðp j x; rSÞ
given sequence x and probing data rS then becomes equivalent to
an MFE structure prediction with a pseudo-energy term

DGSðpi; iÞ ¼ �RT log PðrSðiÞ j piÞ ð13Þ
that is applied to each derivation where i is added to a growing sub-
structure. Note, that DGSðiÞ yields a penalty that is large for unlikely
probing reactivities and vanishes when the probability of the
observed reactivity approaches 1.

On the other hand, according to Bayesian statistics, the likeli-
hood of nucleotide i being in a particular structural context pi,
given the experimentally determined reactivity value rSðiÞ is

pðpi j rSðiÞÞ ¼ PðrSðiÞ j piÞ � pðpiÞ
pðrSðiÞÞ : ð14Þ



Table 1
Composition of the RNAstrand benchmark set and corresponding prediction
performance. The benchmark set consists of 25 different classes with diverse
numbers of representative sequence/structure pairs per class, and quite diverse
sequence lengths. Prediction quality is reflected in the Mathews Correlation
Coefficient (MCC). For each prediction, we show averaged MCC for three different
conditions of structure constraints: (i) unconstrained (NONE), (ii) unpaired positions
(UP), and (iii) base paired positions (BP), see text for details. In the last two rows, RNA
class averages and averages for the entire set of sequence/structure pairs are shown.

RNA class # sequences £ length MCC

NONE UP BP

Viral and phage RNAs 12 26 0.942 0.942 0.942
Group I intron 3 19 0.852 0.852 0.920
snRNA 5 21 0.907 0.907 0.907
IRES 5 23 0.866 0.866 0.891
Synthetic RNA 165 31 0.878 0.893 0.928
Other ribozyme 13 34 0.889 0.896 0.900
Other rRNA 20 35 0.786 0.925 0.929
Hairpin ribozyme 1 39 0.775 0.775 0.775
Hammerh. ribozyme 136 62 0.649 0.775 0.900
tRNA 676 75 0.789 0.909 0.935
Cis-regulatory element 41 87 0.576 0.784 0.981
Y RNA 15 96 0.867 0.967 0.977
Other RNA 123 114 0.781 0.951 0.952
5S rRNA 152 120 0.710 0.923 0.925
Cil. telomerase RNA 18 186 0.563 0.804 0.857
RNase P RNA 52 217 0.735 0.934 0.922
SRP RNA 392 221 0.663 0.941 0.944
RNase MRP RNA 5 276 0.422 0.894 0.831
16S rRNA 6 325 0.496 0.746 0.701
7SK RNA 1 332 0.243 0.959 0.983
RNase E 5 UTR 6 338 0.830 0.961 0.970
RNAIII 4 510 0.765 0.954 0.995
tmRNA 13 680 0.610 0.782 0.735
Group II intron 36 1230 0.455 0.931 0.904
23S rRNA 20 1531 0.567 0.854 0.850

Class average 0.705 0.885 0.902
Total 1920 154 0.737 0.905 0.930
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Fig. 3. Average prediction performance of RNAfold using perfect hard constraints.
The benchmark set for the prediction consists of about 1900 pseudo-knot free
sequence/structure pairs taken from RNA Strand database [2]. The 95% confidence
intervals for PPV, and sensitivity were estimated using bootstrapping with 1000
iterations. As visible in the plot, perfect (one-dimensional) hard constraints
extracted from reference structures substantially increases the prediction perfor-
mance, even if only unpaired positions in the reference are constrained during the
prediction. Surprisingly, constraining just paired positions in the reference yields
slightly lower PPV, while the sensitivity increases as expected. Application of
constraints to both, paired and unpaired positions yields almost perfect predictions.
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This conversion requires additional parameters that need to be
fitted from training data. However, the probability pðpÞ to observe
a nucleotide in context p, and the probability pðrSðiÞÞ to observe a
reactivity value rSðiÞ can be determined from the training set for
the prior distributions.

Among the first using a probabilistic, yet still ad hoc, strategy is
the method suggested by Zarringhalam et al. [139]. Here, the
authors use a non-linear piece-wise mapping technique to convert
rSðiÞ into probabilities to be unpaired qi. They proceed to predict a
structure s with minimal distance to the probing data, where the
distance for each nucleotide i is defined as jpi � qij, with pi ¼ 0 if
i is paired, and pi ¼ 1 if it is unpaired in s. This directly leads to a
pseudo energy term of

D GSðpi; iÞ ¼ b jpi � qij: ð15Þ

where b serves as a scaling factor to adjust the magnitude of penalty
for disagreement between prediction and probing data. Given that
SHAPE experiments are not free of errors, one must not put too
much weight on the experimental data, since errors in probing data
directly lead to errors in secondary structure prediction. Moreover,
it is arguable, whether their distance measure is well chosen. After
all, empirical data on SHAPE reactivities shows, that both, paired
and unpaired nucleotides, are more likely to have low reactivities
[107]. Thus one can not directly infer a small likelihood to be
unpaired from low reactivity.

A more recent implementation that takes up the idea of Eddy
[26] to incorporate SHAPE, DMS, and PARS data was introduced
with the RME program [135]. Following a Bayesian approach to
determine posterior pairing probabilities pðpi j rSðiÞÞ the authors
first fit prior distributions for the respective probing methods from
known data. From that, they compute conditional probabilities
p̂ðiÞ ¼ pðpi ¼ 0 j rSðiÞÞ to observe a nucleotide i being paired. Only
then, the resulting probabilities are converted into pseudo energies

DGSðiÞ ¼ �RT �m � log p̂ðiÞ
1� p̂ðiÞ ð16Þ

to guide a partition function computation, wherem serves as a scal-
ing factor. Although their soft constraint makes use of the likelihood
p̂ðiÞ of a nucleotide to be paired, they apply the pseudo energy term
only to nucleotides involved in base pair stacks, analogously to the
method of Deigan et al. [16]. Consequently, nucleotides at the end of
helices receive only half of the pseudo energy correction compared
to those within a helix. In a post-processing step, the base pair prob-
abilities predicted under this model are corrected by their deviation
from the probing data, and finally used for the construction of a
MEA structure.

An entirely different approach was proposed by Washietl et al.
[123]. Instead of converting the probing data into a pseudo energy
term, the authors draw an optimization problem that aims to find a
perturbation vector~� that (i) minimizes the changes to the nearest
neighbor free energy model required, while (ii) at the same time
maximizing the agreement between predicted probabilities and
observed data. For that purpose, they convert shape reactivities
into probabilities to be unpaired qi using a thresholding approach.
An appropriate perturbation vector thus satisfies

Fð~�Þ ¼
X

l

�2l
s2

þ
Xn

i¼1

ðpið~�Þ � qiÞ2
r2 ! min;

where �l is the perturbation energy for structural element l;pið~�Þ is
the predicted probability to be unpaired given ~�, and the variances
s2l and r2

i serve as weighting factors to account for the trade-off
between the relative uncertainties inherent in the experimental
measurements and the energy model. Ideally, ~� shows close-to-
zero values for positions with good agreement between model
and experiment. Thus, it may directly reveal sequence positions
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that require adjustment, indicating potential post-transcriptional
modification site, or inter-molecular interactions that are not
explicitly handled by the nearest neighbor model. In contrast to
the other methods discussed above, the impact of~� on the diversity
of the structure ensemble can be usually considered small, making
it applicable to RNAs with several distinct low energy structures.
Though, this method has a relatively high asymptotic time com-
plexity of Oðn4Þ, uses an ad hoc probing data conversion, and
strongly depends on the optimization technique to alleviate explo-
ration of the rugged landscape of solutions. Our implementation of
this method in the ViennaRNA Package alleviates these drawbacks
by estimating pið~�Þ from structure samples, and allows for a variety
of optimization techniques and conversions from probing data into
probabilities (see supplementary material, Section 5 of [65]).
3.4.4. Limitations and future perspectives
In theory, one would expect that perfect one-dimensional prob-

ing data, i.e. data that binarily distinguishes between paired and
unpaired, yields almost perfect structure predictions. To test this
hypothesis, we collected a dataset of about 1900 pseudo-knot free
sequence/structure pairs consisting of 25 different classes of RNA
from the RNAstrand database [2], see Table 1 for the composition
of the benchmark set. For each reference structure, we constructed
three sets of (one-dimensional) hard structure constraints to (i)
prohibit unpaired positions in the reference from being paired,
(ii) enforce paired positions in the reference to be paired, and
(iii) a combination of both, respectively. We then applied the
resulting constraints to MFE structure predictions using RNAfold,
and assessed the prediction performance by means of Positive Pre-
dictive Value (PPV), and Sensitivity. For the preparation of the hard
constraints, we removed all non-canonical base pairs, and hairpin
loops with a size u < 3, since RNAfold, as most other secondary
structure prediction programs, can not predict such motifs. How-
ever, the corresponding base pairs remained in the reference struc-
tures for the assessment of prediction performance.

As visible in the benchmark results shown in Fig. 3, perfect hard
constraints are capable of yielding almost perfect prediction per-
formance. Though, sensitivity does not exceed 0:925 due to unusu-
ally small hairpin loops, and a variety of non-canonical base pairs
in the reference data set. It should be noted, however, that in con-
trast to soft constraints, i.e. pseudo energy contributions as used in
latest probing data guided structure predictions, hard constraints
are not robust. Even the slightest error in hard constraints might
yield an entirely wrong prediction, while this effect is much less
pronounced when using soft constraints. This property has to be
kept in mind, whenever constraints are used for guided secondary
structure prediction, since the concept of secondary structures
does not account for tertiary effects such as non-canonical base
pairs, extremely short hairpin loops, or very long interior loops,
that are implicitly included in experimental probing data.

Apart from that, benchmark results always require a critical
assessment of the underlying data set. As shown in Table 1, our
set is dominated by tRNAs, and the majority of sequences has a
length of less than 200 nt. Consequently, the total prediction per-
formance, where each sequence contributes equally, is somewhat
biased by contributions of small RNAs. To account for this over-
representation of some RNA classes, we compare our results to
the average of the 25 individual classes, see Table 1. Clearly, the
total prediction performance is biased by the high number of tRNAs
and other small RNAs where predictions with the Nearest Neighbor
model are usually quite accurate. To avoid overfitting such biases
in training/testing data need to be particularly considered when-
ever parameters are estimated in order to replace or improve
physics based prediction methods, cf. Section 2.
Still, all of the above methods assume that the probing data can
essentially distinguish between paired, and unpaired nucleotides.
However, SHAPE reactivities, for instance, have been shown to dis-
play distinct distributions for at least three different states, namely
paired inside a stack, paired at the end of helices, and unpaired
[107]. Unfortunately, none of the existing approaches takes these
findings into account. Therefore, it remains unclear, whether more
elaborate methods that distinguish more than two pairing states
help to increase prediction performances. We have recently imple-
mented a generic approach for guided structure prediction by
means of hard and/or soft constraints into several programs of
the ViennaRNA Package [65]. This allows, for instance, an easy
application of SHAPE data using the methods of Deigan et al.
[16], Zarringhalam et al. [139], Washietl et al. [123] with the pro-
grams RNAfold, RNAsubopt, and RNAalifold.
4. Discussion

Computational methods for RNA structure prediction have
evolved rapidly over the past decades, primarily due to fundamen-
tal improvements of the underlying algorithms. At the same time,
advances in structure probing technologies allowed for high-
throughput screening of the RNA ‘structure-ome’ both in vivo and
in vitro. In recent years, these two approaches have been combined
to further increase the accuracy of both 2D and 3D structure pre-
dictions. In this paper, we reviewed the concepts of computational
RNA structure prediction and discuss current challenges focusing
on integration of experimentally derived footprinting information.

However, integration of chemical probing data does not neces-
sarily yield better predictions. In fact, we observed in a recent
benchmark that incorporating SHAPE data into MFE prediction
does in some cases lead to decreased accuracy of the resulting sec-
ondary structures, as shown for group II intron and the Lysine
riboswitch in Lorenz et al. [65], supplementary material.

Like other experimental approaches, chemical probing is inher-
ently noisy and reproducibility still remains an issue. Furthermore,
the experimental condition such as pH, ionic strength or concen-
trations of co-factors might differ from those under which the ref-
erence structure was derived. As a consequence, the experiment
might probe a structure different from the reference. Also, the con-
cept of reference structures silently assumes that a given RNA folds
into exactly one structure, even though alternative low free energy
states may exist. It is currently unclear how best to deal with cases
where the RNA forms an ensemble of diverse structures. Quite pos-
sibly, probing data will be less useful in such cases: Even an equi-
librium of just two structures could in the worst case result in
pairing probabilities of exactly 50% for every nucleotide, thus yield-
ing a completely uninformative probing signal. One the up side, it
is likely that current methods do not yet make best possible use of
probing data, since they assume a binary distinction between
paired and unpaired positions. Clearly, probing reactivity will
depend on more structural details and should therefore give infor-
mation on more classes of structural context. The observed distri-
bution of reactivities in SHAPE experiments suggests that at least a
ternary distinction between unpaired, helix-end, and stacked
nucleotides might be advantageous [107].
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