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Figure S1. Multiple sequence alignment for 5’TR and 3’TR of 20 mosquito-borne Flaviviruses that was used 

to form the consensus structure in Fig. 2. The alignment was obtained from the structural alignment toll 

LocARNA, the two fragments were joined by a linker of 5 Ns. Coloring indicates covariation in consensus 

base pairs following the RNAalifold schema, ranging from red(no covariation, full primary sequence 

conservation) to violet (full covariation, all six possible combinations of base pairs). Red boxes highlight the 

conserved 5’ and 3’ cyclization sequence, respectively. 
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Figure S2. Energy landscapes of predicted homodimer interactions. a) 5’TR homodimer b) 3’TR 

homodimer. The thermodynamical model predicts stable minimum free energy structures with -11 

kcal/mol and -10.5 kcal/mol, for the two respective homodimers. Based on the energy landscapes, 

there is no kinetically favourable path from a first base pair (drawn on the diagonal) to the full 

interaction (drawn in the upper right corner) through which the full interaction could be reached 

without crossing any energy barriers. In both examples, the most stable substructure that is 

energetically favourable has a stability of -5 kcal/mol and therefore is less stable than the known CS 
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Figure S3. Predicted duplex structure of the JEV 3’TR and JEV 5’TR obtained from RNAcofold, showing 

the maximum possible extent of interaction. A) Known long range interaction elements, such as 

cyclization sequence (CS), downstream AUG region (DAR) and upstream AUG region (UAR) are 

highlighted; B) structure with reliability annotation (based on pair probabilities) ranging from blue 

(poor reliability) to red (high confidence). 
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Figure S4. Small Angle X-Ray Scattering (SAXS) plots of JEV RNA-RNA interaction. A) Subtracted & merged 

scattering data for JEV RNA depicting the scattering intensity vs. scattering angle (q = 4πsinϴ/λ). B) Guinier 

plots representing the determination of Rg and homogeneity derived from the low-angle region. C) 

Dimensionless Kratky plots of JEV RNA depicting an elongated structure as a result of the non-Gaussian 

shape(s) of the curve(s). D) Pair-distance distribution plots for JEV RNA for real-space Rg and maximal 

particle dimension (Dmax) determination from the entire SAXS dataset. 
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List of NCBI GenBank accession numbers used to analyse JEV sequences. 

JN381865.1 
EF623987.1 
MH753131.1 
MK585066.1 
FJ185036.1 
JN381858.1 
JN381867.1 
KM677246.1 
AB569985.2 
KF297916.1 
JN381870.1 
AY849939.1 
KX965684.1 
KF297915.1 
EF107523.1 
JN864064.1 
AB569981.2 
AB569983.2 
AF221500.1 
JQ086763.1 
AB551990.1 
MH753128.1 
FJ185037.1 
HM596272.1 
JN381866.1 
JN381863.1 
AF080251.1 
MH258851.1 
JF706272.1 
JN711459.1 
JF706269.1 
MH258853.1 
JN381861.1 
JN381873.1 
JN711458.1 
JN381871.1 
EF571853.1 
AB569990.2 
MH753130.1 
KF907505.1 
JN381860.1 
AF486638.1 
KT447437.1 
MH258850.1 
AF315119.1 
JN381864.1 
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MF002373.1 
JN381859.1 
AB569980.2 
U14163.1 
NC_001437.1 
MF326270.1 
AB569984.2 
AF098737.1 
EF623989.1 
AF098735.1 
JN381872.1 
JN381869.1 
AF075723.1 
JN381854.1 
JF706280.1 
M18370.1 
JF706284.1 
KR265316.1 
AF221499.1 
AY184212.1 
U47032.1 
KU323483.1 
AB196924.1 
JX131374.1 
AF416457.1 
LC461960.1 
EF543861.1 
KP164498.2 
AY508813.1 
AF014160.1 
MH258849.1 
AF098736.1 
MH258848.1 
AB196925.1 
MH385014.1 
JN381853.1 
MH753132.1 
JN381856.1 
JF706275.1 
JF706283.1 
D90194.1 
KU363309.1 
D90195.1 
KT239164.1 
AB569988.2 
AF014161.1 
AB569982.2 
JF915894.1 
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JQ086762.1 
JN381862.1 
JN381868.1 
JN381857.1 
JF706273.1 
HE861351.1 
JN604986.1 
MH258852.1 
JF706285.1 
AB196926.1 
AB196923.1 
AF069076.1 
JN381855.1 
JF706276.1 
EF623988.1 


