
Accepted at the AI4NA workshop at ICLR 2025

BAYESIAN APPROXIMATION OF RNA FOLDING TIMES

Dominik Scheuer∗ Frederic Runge∗
Machine Learning Lab Machine Learning Lab

University of Freiburg, Germany University of Freiburg, Germany
dom.scheuer@gmail.com runget@cs.uni-freiburg.de

Jörg K.H. Franke Michael T. Wolfinger
Machine Learning Lab University of Vienna, Austria

University of Freiburg, Germany RNA Forecast e.U., Vienna, Austria
frankej@cs.uni-freiburg.de michael.wolfinger@univie.ac.at

Christoph Flamm Frank Hutter
Department of Theoretical Chemistry University of Freiburg, Germany

University of Vienna, Austria ELLIS Institute Tübingen, Germany
christoph.flamm@univie.ac.at fh@cs.uni-freiburg.de

ABSTRACT

RNA is a dynamic biomolecule with its function largely determined by its folding
into complex structures. During the folding process, an RNA traverses through
a series of intermediate structural states, with each transition occurring at vari-
able rates that collectively influence the time required to reach the functional
form. Understanding these folding kinetics is vital for predicting RNA behav-
ior and optimizing applications in synthetic biology and drug discovery. While
in silico kinetic RNA folding simulators are often computationally intensive and
time-consuming, accurate approximations of the folding times can already be very
informative to assess the efficiency of the folding process. Here, we present
KinPFN, a novel approach that leverages prior-data fitted networks to directly
model the posterior predictive distribution of RNA folding times. Trained on
synthetic data representing arbitrary prior folding times, KinPFN efficiently ap-
proximates the cumulative distribution function of RNA folding times in a single
forward pass, given only a few initial folding time examples. Our method offers
a modular extension to RNA kinetics algorithms, promising significant computa-
tional speed-ups orders of magnitude faster, while achieving comparable results.

1 INTRODUCTION

Ribonucleic acid (RNA) plays a pivotal role in various biological processes, serving as a crucial
intermediary between DNA and proteins while exerting significant regulatory functions through
diverse mechanisms (Fu, 2014). Composed of four nucleotides — Adenine (A), Cytosine (C), Gua-
nine (G), and Uracil (U) — the functionality of RNA is closely tied to its structure (Lodish et al.,
2005): An RNA molecule adopts one or more native conformations that are essential for its biologi-
cal activity (Fang et al., 2015). The dynamic process of how RNAs acquire their functional structure
is known as the kinetic folding of RNA. During this process, the RNA strand transitions through
several intermediate structural states, driven by intra-molecular interactions (Flamm et al., 2000; Yu
et al., 2018). Since misfolding can lead to significant dysfunctions (Conlon & Manley, 2017), the
study of RNA folding kinetics is highly relevant for biomedical applications.

An important aspect of folding dynamics is the study of the rates and pathways through which
RNA molecules achieve their native structures (Chen, 2008). A common measure to quantify these
processes are first passage times (FPTs), i.e. the time required to acquire a certain structure for
the first time, and their cumulative distribution functions (CDFs) (Flamm et al., 2000; Wolfinger
et al., 2004). These functions are derived from extensive simulations, requiring thousands of folding

∗Equal Contribution.

1

Accepted at the AI4NA workshop at ICLR 2025

iterations to capture the probabilistic behavior of RNA molecules. While essential for understanding
RNA dynamics, calculating FPT CDFs is computationally expensive (Wol�nger et al., 2004; Badelt
et al., 2023), posing a signi�cant barrier to real-time applications such as kinetic RNA design, which
is critical for drug discovery. While deep learning methods could improve the state of the art in RNA
folding (Fu et al., 2022; Franke et al., 2024) and RNA design (Runge et al., 2024; Patil et al., 2024),
they are not yet used in modeling RNA kinetics.

In this work, we presentKinPFN, a novel deep learning-based approach that dramatically accelerates
the computation of RNA �rst passage times via in-context learning.KinPFN leverages prior-data
�tted networks (PFNs) (M̈uller et al., 2022) trained on synthetic datasets of RNA folding times to
predict the entire CDF of folding times from just a few context examples in a single forward pass.
By providing fast and accurate distribution approximations,KinPFN can be integrated with existing
RNA kinetics simulators, offering comparable performance at a fraction of the computational cost.

Our main contributions are summarized as follows:

• We propose a new synthetic prior to sample datasets of RNA folding times. We use this syn-
thetic data to train a prior-data �tted network to learn to predict the distribution of RNA �rst
passage times, conditioned on a small set of context examples (Section 2.1).

• We introduceKinPFN, a new deep learning model for RNA kinetics.KinPFN provides accurate
predictions of RNA �rst passage time distributions, accelerating kinetic simulations by orders
of magnitude (Section 2.2).

• We evaluateKinPFN's performance on synthetic and real-world RNA data, demonstrating its
practical utility through two case studies: an analysis of eukaryotic RNAs and a study of RNA
folding ef�ciency (Section 4).

We provide an overview ofKinPFN in Figure 1. Our source code, data, and trained models are
publicly available athttps://github.com/automl/KinPFN .

Figure 1: Graphical abstract.a: KinPFN is trained on synthetic RNA folding time distributions
drawn from parameterized multi-modal Gaussians by minimizing the negative log-likelihood (NLL).
b: KinPFN accelerates RNA kinetics simulators by predicting the RNA folding time distribution in
a single forward pass, given a few folding times as context.

2

Accepted at the AI4NA workshop at ICLR 2025

2 APPROXIMATION OFRNA FOLDING TIME DISTRIBUTIONS

The �rst passage timet is the time required for the RNA� 2 f A; G; C; U gl of lengthl to fold from
an initial structure! start into a stop structure! stop while transitioning through arbitrary intermediate
structural states. RunningM folding simulations under the same conditions (for RNA sequence
� , ! start, and! stop) yields distinct �rst passage timest1; : : : ; tM . By aggregating these times, we
compute the fraction of molecules� folded by timeT, denotedF � (T), whereF �

t (T) = P(t � T)
represents the CDF of the stochastic variablet.

We then consider the problem of learning the posterior predictive distribution (PPD) of �rst passage
times for an RNA molecule� , conditioned on a small set of initial examples, to approximate the
cumulative distribution function (CDF): GivenN � M observed �rst passage timest1; : : : ; tN
and a prior distribution over �rst passage times from which we can generate samples, we aim to
approximate the PPDq(t j t1; : : : ; tN). With an approximated PPD, we can compute the predicted
CDFF̂ � (T), which approximates the true CDFF � (T); the fraction of molecules folded by timeT.

However, obtaining large amounts of prior RNA kinetics data to train a deep learning model, par-
ticularly for longer RNAs, is currently infeasible due to the exponential runtime of accurate ki-
netic simulators (see Figure 4 in Appendix B). This hinders us from using traditional Bayesian
approaches for the approximation of RNA �rst passage times, e.g. by training a variational autoen-
coder (VAE) (Kingma, 2013) or a probabilistic transformer (Franke et al., 2022). Therefore, we
take an alternative approach, training a prior-data �tted network (PFN) (Müller et al., 2022) on a
synthetic prior of RNA �rst passage time distributions. PFNs use a transformer-based model to per-
form approximate Bayesian inference. They are trained to predict an outputy 2 R, conditioned on
an inputx and a training setD train of input-output pairs. During training, these samples are drawn
from a prior distribution over datasetsp(D), optimizing the Cross-Entropy loss for a PFNq� with
parameters� ,

` � = E(x;y) [D train� p(D) [� logq� (y j x; D train)] , (1)

for predicting the labely, given x and D train. As shown by M̈uller et al. (2022), this approach
directly minimizes the Kullback-Leibler (KL) divergence between the prediction of the PFN and the
true posterior predictive distribution when training on many samples of the form(x; y) [D train. In
this work, we adapt this strategy to tackle the prediction of RNA �rst passage time distributions,
accounting for the speci�c challenges of the probabilistic behavior of RNA molecules that is also
re�ected in kinetic simulators by renouncing quantile information.

2.1 A SYNTHETIC PRIOR FORRNA FOLDING TIME DISTRIBUTIONS

Developing a synthetic prior for molecular problems is challenging since it seems impossible to
generate meaningful synthetic combinations of molecule features with posterior information from
a process depending on these features. We, therefore, developKinPFN independent of molecular
features and restrict its input to �rst passage times only. This offers the advantage that we can
applyKinPFN to predict �rst passage time distributions at test time, independent of the underlying
data-generating process.

For the development of our synthetic FPT prior, we leverage the observation that RNA �rst pas-
sage time distributions often exhibit CDFs with regions of slower growth interspersed with steeper
transitions, leading to distinct plateaus and multiple changes between convex and concave sec-
tions representing inef�ciencies in the corresponding folding pathway (Flamm et al., 2000; Wol�n-
ger et al., 2004). These patterns make multi-modal distributions a natural choice to model the
complexity of such processes synthetically, as they are designed to capture data with multiple
local maxima or modes (Hartigan & Hartigan, 1985). For this work, we decide to construct a
prior distribution over RNA �rst passage times as a family of multi-modal Gaussian distributions
f P k j k 2 f 2; 3; 4; 5g; k 2 	 k g. Each multi-modal distribution in this family comprisesk Gaus-
sian components, each characterized by its own mean� i and standard deviation� i , i = 1 ; : : : ; k.
The parameter space	 k thus de�nes the family of distributions, with each speci�c distribution pa-
rameterized by a vector k = ((� 1; � 1); (� 2; � 2); : : : ; (� k ; � k)) within 	 k . We illustrate a synthetic
bi-modal PDF alongside its corresponding CDF and examples of synthetic �rst passage time CDFs
in Figure 5. However, note that we are not limited to Gaussians in the prior formulation but that any
family of (multi-modal) distributions could be used as a prior forKinPFN.

3

Accepted at the AI4NA workshop at ICLR 2025

Since we cannot make any further assumptions about the distribution of folding times, especially
when generating synthetic data,x andy of a prior distributionp(k) are considered completely
independent. Consequently, we decide to assign a value of zero to all variablesx, representing
no prior information, while they variables are ultimately sampled from the aforementioned multi-
modal distributions. As the targetsy represent synthetic �rst passage times, they will be referred to
ast from this point forward. We set the range of possible �rst passage time valuest � p(k) to
[10� 6; 1015], a range that covers a large fraction of possible folding processes based on observations
from preliminary kinetic simulations. To mimic realistic �rst passage time distributions, we choose
bounded uniform base means� base

i � U (� 5; 16), and uniformly distributed standard deviations
� i � U (0:1; 4:2) based on preliminary experiments. To increase the variability of the prior, we
introduce a uniformly distributed shifting parameter� � U (� 6; 15), which is sampled only once
and �xed for all i = 1 ; : : : ; k. The �nal means� i are then given by:

� i = � base
i + � , (2)

with the probability density function (PDF) of the multi-modal Gaussian distribution parameterized
by k expressed as

p(k ; x) =
kX

i =1

exp
�

�
(log x � � i)2

2� 2
i

�
, (3)

for a valuex.

To sample �rst passage times (FPTs) from these PDFs, we generate the PDF over a logarithmically
spaced range ofx-values within the provided FPT bounds and employ the inverse transformation
method, known as the Smirnov transformation. The required series of calculations to derive the
CDF, its quantile function CDF� 1, different normalizations to properly scale the functions, and
logarithmic transformations are detailed in Appendix C.1. The prior distribution over synthetic
RNA �rst passage times used in this work is then represented by the log-encoded samples from a
multi-modal Gaussian distributionp(k) 2 P k :

Y = log 10

��
CDF� 1(k) (U(0; 1)) j p(k)

	�
: (4)

2.2 PFNS FOR THEAPPROXIMATION OFRNA FOLDING TIME DISTRIBUTIONS

We propose to use PFNs (M̈uller et al., 2022) to accelerate kinetic simulations for RNA �rst pas-
sage time distributions. During training, the PFNq� with model parameters� is presented withM
synthetic �rst passage times,f (0i ; t i)gM

i =1 , sampled from the prior distributionp(k). To enable
the model to generalize across varying amounts of training data instead of a �xed number of con-
text folding times, this example set is split at a random cutoff pointN � U (0; M � 1), resulting
in a training subsetD train = f (0i ; t i)gN

i =1 , while the remaining �rst passage times are held out via
masking. These held-out times,t test = f tN +1 ; : : : ; tM g, are then used as targets for prediction by
minimizing the prior-data negative log-likelihood (NLL) according to Equation 1:

` � = E(0 ;t test) [D train� p(k) [� logq� (t testj0test; D train)] . (5)

Figure 2 schematically illustrates this training process ofKinPFN for a single batch of sizeB , along
with its application in approximating the posterior predictive distribution (PPD) of RNA �rst passage
times usingN real folding times as context obtained from a kinetic simulator.

KinPFN Architecture and Hyperparameters We adopt the transformer-based (Vaswani et al.,
2017) PFN architecture as proposed by Müller et al. (2022) and treat each pair(0; t) as a separate
token. To learn the distribution of the targets rather than ordering, we deliberately omit positional
encoding to maintain permutation invariance according to Müller et al. (2022). Since the �rst pas-
sage timest have already been log-encoded to the range[� 6; 15] in the prior distributionp(k)
(see Section 2.1), we encode the input with a linear layer after normalizing the data to zero mean
and a standard deviation of one while preserving the distributional properties. Following Müller
et al. (2022), we mask the attention matrix such that each position only attends to the training posi-
tions. This ensures that only training examples in�uence the predictions while test samples remain
independent. We use the Adam optimizer (Kingma & Ba, 2015) with a cosine decay (Loshchilov
& Hutter, 2017) and a linear learning rate warm-up over 25% of the training steps as previously

4

Accepted at the AI4NA workshop at ICLR 2025

Sample synthetic �rst passage timesD (j) � p(k) 2 P k

D (1) = f (0i ; t i)gM
i =1 =

f (0i ; t i)gN
i =1 [f (0i ; t i)gM

i = N +1 =

D (1)
train [f (0(1)

test; t (1)
test)g

...

D (B) = f (0i ; t i)gM
i =1 =

f (0i ; t i)gN
i =1 [f (0i ; t i)gM

i = N +1 =

D (B)
train [f (0(B)

test ; t (B)
test)g

TrainKinPFN by minimizing

�
P B

j =1 logq� (t (j)
testj0

(j)
test; D (j)

train)

N real �rst passage times
and test input for inference up to a certain

number of folding simulationsM Bayesian inference via the trained
KinPFN, with the actual training

data and test points as input:

q� � (t testj0test; D train) � p(t testj0test; D train)

(f (0i ; t i)gN
i =1 ; f (0i)gM

i =1) = (D train; 0test)

KinPFN with parameters� �

Figure 2: A schematic visualization ofKinPFN. Diagram based on M̈uller et al. (2022).

proposed (M̈uller et al., 2022; Adriaensen et al., 2023).KinPFN outputs a discretized distribu-
tion q� (t j0; D train) (Riemann distribution; see M̈uller et al. (2022)) using a �nite number of buckets
with equal likelihood of containingt; a hyperparameter that is included in our hyperparameter op-
timization (HPO) procedure leading to a �nal number of 1,000 buckets forKinPFN, initialized on
a batch of 100,000 prior samples. A visualization of the discretized distributionq� can be found
in Appendix H.4. Further hyperparameters, like the number of layers, the embedding size, or the
learning rate are inherited from the Transformer architecture. Given the in�nite nature of synthetic
training data, we set the dropout rate and the weight decay to zero. We tune hyperparameters in
two separate runs using Neural Pipeline search (NePS) (Stoll et al., 2023). More details regarding
hyperparameters, hyperparameter optimization, and the �nal con�guration ofKinPFN can be found
in Appendix D. The �nal model ofKinPFN was trained for roughly �ve hours on a single A40 GPU.

3 RELATED WORK

An alternative toKinPFN are probabilistic density estimators like kernel density estimation
(KDE) (Bishop, 2006), Gaussian Mixture Models (GMM) (Bishop, 2006) or Bayesian Gaussian
Mixture Models, also known as Dirichlet Process GMMs (DP-GMM), which utilize a Variational
Bayesian estimation of Gaussian mixtures (Blei & Jordan, 2006). From a deep learning perspec-
tive, methods based on normalizing �ows (Rezende & Mohamed, 2015), variational autoencoders
(VAEs) (Kingma, 2013), or a probabilistic transformer as proposed in (Franke et al., 2022), would
be well suited for probability density estimation of RNA folding kinetics. However, these methods
typically require large amounts of training data which is not available for RNA folding kinetics.
Instead, we approach the problem of folding time prediction using a synthetic prior to train a PFN
for direct approximation of the CDF of folding time distributions. For more discussions on related
work, please see Appendix A.

4 EXPERIMENTS

In this section, we show thatKinPFN transfers from synthetic data to data obtained from two differ-
ent kinetic simulators and demonstrate its practial relevance in a case study on folding ef�ciency. We
report performance in terms of prior-data negative log-likelihood (NLL) between the approximated
posterior predictive distribution (PPD) and the true �rst passage time distribution, mean absolute
error (MAE) between the CDF of the approximated PPDF̂ (t) and the true target CDFF (t), and
Kolmogorov-Smirnov (KS) statistic (see Appendix F). All experiments analyzing runtimes were
benchmarked on a single AMD Milan EPYC 7513 CPU with 2,6 GHz. Preliminary evaluations for
the predictions on samples from the synthetic prior are shown in Appendix H.1.

KinPFN Transfers to Real-World ScenariosTo assess the capabilities ofKinPFN to transfer from
synthetic data to data obtained from kinetic simulators, we create a novel test set of 635 randomly
generated RNA sequences with lengths between 15 and 147 nucleotides, runKinfold (Flamm et al.,

5

Accepted at the AI4NA workshop at ICLR 2025

Figure 3:KinPFN approximations of �rst passage time distributions for simulation data. a)KinPFN
testing set PPD mean NLL losses along with the CDF MAEs across RNA sequence length ranges.
Error bars show the standard deviation of the losses. b) Example approximation for an alternative
folding path of a 75 nucleotide RNA sequence with ground truth data obtained fromKinfold simu-
lations. c) Example approximation for a 56 nucleotide RNA usingKfold simulation data as ground
truth. d)KinPFN approximation of the FTP CDF of a tRNAphe using Kinfold simulation data as
ground truth. e) Runtime analysis of Kinfold for 50 and 1000 simulations. f) Case study of folding
ef�ciency. Ground truth CDFs are shown on the left,KinPFN approximations are shown on the
right. Context �rst passage times: a-c)N = 25; d) N = 50; f) N = 10. Approximation examples
show the mean and standard deviation around the mean for 20 predictions with different context
examples sampled at random. Please �nd more results and visualizations in Appendix H.

6

Accepted at the AI4NA workshop at ICLR 2025

2000) for 1,000 simulations on each of the test samples, and extract �rst passage times (FPTs) from
the simulations. We then analyze the robustness ofKinPFN to changes in the sequence length of the
RNA, the start and stop structure, and a different kinetic simulator,KFold (Dykeman, 2015). Addi-
tionally, we evaluateKinPFN predictions for four types of natural RNAs usingKinfold simulations.

Comparisons ofKinPFN with GMMs, DP-GMMs, and KDE for different context sizes (N 2
f 25; 50; 75; 100; 250; 500; 750; 1000g) on our novel testset are shown in Tables 5, 6, 7, 8, 9, and 10
in Appendix H.2. We observe thatKinPFN outperforms the other approaches across nearly all con-
text �rst passage times and metrics. Consistent with our expectations, the performance ofKinPFN
constantly improves with more context FPTs. In addition,KinPFN seems to generalize across dif-
ferent sequence lengths, start and stop structures, and different simulators as shown in Figure 3a, b,
and c. Notably, these approximations withKinPFN only require 2,5% of the compute budget of the
original simulators to achieve comparable results. However, while we observed robust performance
of KinPFN for randomly generated RNA sequences, natural RNAs might show different folding
behavior compared to random RNA sequences due to million years of evolutionary pressure (Vicens
& Kieft, 2022; Herschlag, 1995). As shown in Figure 3d,KinPFN is capable of approximating the
ground truth data of a tRNAphe nearly perfectly using only 50 context �rst passage times; a� 20�
speed-up at comparable performance (see Figure 3e). Similar results for further RNA types, are
shown in Appendix H.5 and H.6.

Case Study: RNA Folding Ef�ciency Analysis To demonstrate the utility ofKinPFN, we conduct
a case study focused on comparing the folding ef�ciency of three 43 nucleotide long RNA molecules
(� 0, � 1, � 2) that are predicted to fold into the same minimum free energy (MFE) structure. Alter-
ations in the RNA sequences, such as mutations or modi�cations, can have a signi�cant effect on the
folding dynamics (Flamm et al., 2000). A comparison of the CDFs of �rst passage times can distin-
guish molecules that fold more or less ef�ciently and provide information about how alternations in
the molecules impact the folding behavior, an important aspect for RNA-based therapeutics (Mollica
et al., 2022). For our experiment, we simulate 1,000 folding trajectories from the open chain to the
MFE structure usingKinfold and calculate the ground truth �rst passage time CDFs shown in the
left plot of Figure 3f for each of the three RNA molecules.

We �nd that KinPFN captures the general folding behavior of the RNAs accurately, as shown in
Figure 3f (right). However, while it captures the saddle points of the CDFs of� 1 (orange) and� 2
(green) arguably well, it is slightly less accurate for the most ef�ciently folding RNA,� 0 (blue).
Remarkably, theKinPFN approximations were obtained using only ten context times, marking a
100� speed-up compared to each of the three individual simulation trajectories. Results for more
approximations using different context lengths are shown in Appendix H.7.

5 CONCLUSION, L IMITATIONS & FUTURE WORK

We presentKinPFN, the �rst work that uses prior-data �tted networks for biological data. Trained
on a synthetic prior, we show that our novel approach can accurately model RNA folding kinetics
while accelerating RNA �rst passage time analysis by orders of magnitude.

Limitations While showing impressive accuracy,KinPFN also has limitations. Generally, it
depends on a data-generating approach like kinetic simulators during inference. Consequently,
KinPFN's performance is bounded by the accuracy of the simulator. Incorporating other features,
like the RNA sequence, structure, or energy information, could mitigate this issue. However, it is
an open problem to implement the required information in a synthetic prior without using external
data sources. Additionally, larger-scale evaluations, e.g., on longer RNAs, would con�rm its inde-
pendence of RNA features like sequence length. However, obtaining this kind of data is currently
infeasible due to the large computing demands of available simulators and the problem's complex-
ity. Finally and similar to GMMs and KDEs, the performance ofKinPFN strongly depends on the
provided context. We tried to compensate for that by showing mean and standard deviation around
the mean across 20 context inputs to quantify the variation inKinPFN approximations.

Future Work Using synthetic data for biological applications appears very promising. Unlike
GMMs or standard KDEs,KinPFN is not limited to prede�ned kernels or Gaussian distributions;
we consider the de�nition of synthetic priors using different distributions as future work.

7

Accepted at the AI4NA workshop at ICLR 2025

SOURCECODE AND REPRODUCIBILITY OF RESULTS

To ensure the reproducibility of our results, we have made our source code, the trained model, and
datasets publicly available athttps://github.com/automl/KinPFN . The repository con-
tains detailed instructions for setting up the required conda environment and package installs (see
README.md). Model checkpoints ofKinPFN are provided in themodels directory. The valida-
tion and test sets are stored in theneps validation set andkinpfn testing set direc-
tories, respectively. We provide notebooks (along with the required experiment data) to demonstrate
the training and evaluation ofKinPFN and for reproducing results in thenotebooks directory.
We recommend using a single GPU with at least 48GB of memory for trainingKinPFN. However,
for inference, a single CPU should be suf�cient. Following the provided instructions, it should be
straightforward to reproduce our environment, train and evaluateKinPFN, and replicate our experi-
ments with minimal effort.

AUTHOR CONTRIBUTIONS

F.R. conceptualized the study and developed the methodology. D.S. and F.R. wrote the manuscript,
designed �gures, and were responsible for data curation. D.S. implemented the model and con-
ducted all experiments. J.F. contributed to the experimental design and baseline selection. M.W. and
C.F. provided expertise in RNA kinetics simulations and theory. J.F., M.W., and C.F. assisted with
manuscript re�nement and �gure layout. F.H. provided project supervision and secured funding.

ACKNOWLEDGMENTS

Dominik Scheuer and Frederic Runge would like to thank Samuel Müller and Steven Adriaensen for
helpful discussions and valuable comments. This work is supported in part by the European Union's
Horizon Europe Doctoral Network programme under the Marie-Sk�odowska-Curie grant agreement
No 101072930 (TACsy), the Novo Nordisk Foundation grant NNF21OC0066551 (MATOMIC),
and the Austrian Science Fund FWF grant I-6440 N. The authors further acknowledge funding by
the German Research Foundation (DFG) under SFB 1597 (SmallData), grant no. 499552394, and
through grant no. 417962828 as well as support by the state of Baden-Württemberg through bwHPC
and the German Research Foundation (DFG) through grant no INST 39/963-1 FUGG (bwForCluster
NEMO) and grant INST 35/1597-1 FUGG (bwForCluster Helix). Frank Hutter acknowledges the
�nancial support of the Hector Foundation. This research was funded by the European Union (via
ERC Consolidator Grant DeepLearning 2.0, grant no. 101045765). Views and opinions expressed
are however those of the author(s) only and do not necessarily re�ect those of the European Union
or the European Research Council. Neither the European Union nor the granting authority can be
held responsible for them.

REFERENCES

Steven Adriaensen, Herilalaina Rakotoarison, Samuel Müller, and Frank Hutter. Ef�cient bayesian
learning curve extrapolation using prior-data �tted networks. InThirty-seventh Conference on
Neural Information Processing Systems (NeurIPS 2023), 2023. URLhttps://openreview.
net/forum?id=xgTV6rmH6n .

Iddo Aviram, Ilia Veltman, Alexander Churkin, and Danny Barash. Ef�cient procedures for the
numerical simulation of mid-size rna kinetics.Algorithms for Molecular Biology, 7:1–11, 2012.

Stefan Badelt, Ronny Lorenz, and Ivo L Hofacker. Drtransformer: heuristic cotranscriptional rna
folding using the nearest neighbor energy model.Bioinformatics, 39(1):btad034, 2023.

Christopher Bishop.Pattern Recognition and Machine Learning, volume 16, pp. 140–155. 01 2006.
doi: 10.1117/1.2819119.

8

Accepted at the AI4NA workshop at ICLR 2025

David M. Blei and Michael I. Jordan. Variational inference for Dirichlet process mixtures.Bayesian
Analysis, 1(1):121 – 143, 2006. doi: 10.1214/06-BA104. URLhttps://doi.org/10.
1214/06-BA104 .

Shi-Jie Chen. Rna folding: conformational statistics, folding kinetics, and ion electrostatics.Annual
Review of Biophysics, 37:197–214, 2008. doi: 10.1146/annurev.biophys.37.032807.125957.

Elizabeth G. Conlon and James L. Manley. RNA-binding proteins in neurodegeneration: mecha-
nisms in aggregate.Genes & Development, 31(15):1509–1528, August 2017. doi: 10.1101/gad.
304055.117.

Samuel Dooley, Gurnoor Singh Khurana, Chirag Mohapatra, Siddartha V Naidu, and Colin White.
Forecastpfn: Synthetically-trained zero-shot forecasting.Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Eric C. Dykeman. An implementation of the Gillespie algorithm for RNA kinetics with logarithmic
time update.Nucleic Acids Research, 43(12):5708–5715, 05 2015. ISSN 0305-1048. doi: 10.
1093/nar/gkv480. URLhttps://doi.org/10.1093/nar/gkv480 .

Xianyang Fang, Jason R Stagno, Yuba R Bhandari, Xiaobing Zuo, and Yun-Xing Wang. Small-
angle x-ray scattering: a bridge between rna secondary structures and three-dimensional topolog-
ical structures.Current Opinion in Structural Biology, 30:147–160, 2015. ISSN 0959-440X.
doi: https://doi.org/10.1016/j.sbi.2015.02.010. URLhttps://www.sciencedirect.
com/science/article/pii/S0959440X15000196 . Folding and binding/Nucleic acids
and their protein complexes.

Christoph Flamm, Walter Fontana, Ivo L. Hofacker, and Peter Schuster. RNA folding at elementary
step resolution.RNA, 6(3):325–338, March 2000. doi: 10.1017/s1355838200992161.

Christoph Flamm, Ivo L. Hofacker, Peter F. Stadler, and Michael T. Wol�nger. Barrier trees of
degenerate landscapes.Zeitschrift f̈ur Physikalische Chemie, 216(2):155, 2002. doi: doi:10.1524/
zpch.2002.216.2.155. URLhttps://doi.org/10.1524/zpch.2002.216.2.155 .

Jörg Franke, Frederic Runge, and Frank Hutter. Probabilistic transformer: Modelling ambiguities
and distributions for rna folding and molecule design.Advances in Neural Information Processing
Systems, 35:26856–26873, 2022.

Jörg K.H. Franke, Frederic Runge, Ryan Köksal, Rolf Backofen, and Frank Hutter. Rnaformer: A
simple yet effective deep learning model for rna secondary structure prediction.bioRxiv, 2024.
doi: 10.1101/2024.02.12.579881.

Laiyi Fu, Yingxin Cao, Jie Wu, Qinke Peng, Qing Nie, and Xiaohui Xie. Ufold: fast and accurate
rna secondary structure prediction with deep learning.Nucleic acids research, 50(3):e14–e14,
2022.

Xiang-Dong Fu. Non-coding RNA: a new frontier in regulatory biology.National Science Review,
1(2):190–204, 2014.

Tsukasa Fukunaga and Michiaki Hamada. Computational approaches for alternative and transient
secondary structures of ribonucleic acids.Brie�ngs in Functional Genomics, 18(3):182–191,
2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. InInternational conference on machine learning, pp.
1263–1272. PMLR, 2017.

J. A. Hartigan and P. M. Hartigan. The dip test of unimodality.The Annals of Statistics, 13(1):70–84,
1985. ISSN 00905364, 21688966. URLhttp://www.jstor.org/stable/2241144 .

Daniel Herschlag. Rna chaperones and the rna folding problem.Journal of Biological Chemistry,
270(36):20871–20874, 1995.

9

Accepted at the AI4NA workshop at ICLR 2025

Noah Hollmann, Samuel M̈uller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A transformer
that solves small tabular classi�cation problems in a second. InThe Eleventh International Con-
ference on Learning Representations (ICLR), 2023.

Diederik P Kingma. Auto-encoding variational bayes.arXiv preprint arXiv:1312.6114, 2013.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. InProceedings
of the 3rd International Conference on Learning Representations (ICLR), 2015. URLhttps:
//arxiv.org/abs/1412.6980 .

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
a novel bandit-based approach to hyperparameter optimization.J. Mach. Learn. Res., 18(1):
6765–6816, jan 2017. ISSN 1532-4435.

Harvey Lodish, Arnold Berk, Paul Matsudaira, Chris A. Kaiser, Monty Krieger, Matthew P. Scott,
et al. Molecular Cell Biology. W.H. Freeman and Co., New York, 5th edition, 2005.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts, 2017.
URL https://arxiv.org/abs/1608.03983 .

Geoffrey J. McLachlan, Sharon X. Lee, and Suren I. Rathnayake. Finite mixture mod-
els. Annual Review of Statistics and Its Application, 6(Volume 6, 2019):355–378,
2019. ISSN 2326-831X. doi: https://doi.org/10.1146/annurev-statistics-031017-100325.
URL https://www.annualreviews.org/content/journals/10.1146/
annurev-statistics-031017-100325 .

Luca Mollica, Francesca Anna Cupaioli, Grazisa Rossetti, and Federica Chiappori. An overview of
structural approaches to study therapeutic rnas.Frontiers in Molecular Biosciences, 9:1044126,
2022.

Samuel M̈uller, Matthias Feurer, Noah Hollmann, and Frank Hutter. Pfns4bo: In-context learning
for bayesian optimization. InInternational Conference on Machine Learning, pp. 25444–25470.
PMLR, 2023.

Samuel M̈uller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Trans-
formers can do bayesian inference. InInternational Conference on Learning Representations
(ICLR), 2022. URLhttps://openreview.net/forum?id=KSugKcbNf9 .

Radford M. Neal. Markov chain sampling methods for dirichlet process mixture models.Journal
of Computational and Graphical Statistics, 9(2):249–265, 2000. doi: 10.1080/10618600.2000.
10474879. URLhttps://www.tandfonline.com/doi/abs/10.1080/10618600.
2000.10474879 .

Sharat Patil, Frederic Runge, Jörg K.H. Franke, and Frank Hutter. Towards generative RNA de-
sign with tertiary interactions. InICLR 2024 Workshop on Generative and Experimental Per-
spectives for Biomolecular Design, 2024. URLhttps://openreview.net/forum?id=
pLzoHOceHN.

Eva Pra�snikar, Martin Ljubi�c, Andrej Perdih, and Jure Bori�sek. Machine learning heralding a new
development phase in molecular dynamics simulations.Arti�cial intelligence review, 57(4):102,
2024.

Herilalaina Rakotoarison, Steven Adriaensen, Neeratyoy Mallik, Samir Garibov, Eddie Bergman,
and Frank Hutter. In-context freeze-thaw bayesian optimization for hyperparameter optimization.
In Forty-�rst International Conference on Machine Learning (ICML), 2024.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing �ows. InInterna-
tional conference on machine learning, pp. 1530–1538. PMLR, 2015.

Frederic Runge, J̈org Franke, Daniel Fertmann, Rolf Backofen, and Frank Hutter. Partial rna design.
Bioinformatics, 40(Supplement1):i437–i445, 2024.

10

Accepted at the AI4NA workshop at ICLR 2025

Danny Stoll, Neeratyoy Mallik, Simon Schrodi, Maciej Janowski, Samir Garibov, Tarek
Abou Chakra, Daniel Rogalla, Eddie Bergman, Carl Hvarfner, Binxin Ru, Nils Kober, Théophane
Vallaeys, and Frank Hutter. Neural pipeline search (NePS), October 2023. URLhttps:
//github.com/automl/neps .

Richard S Sutton. Reinforcement learning: An introduction.A Bradford Book, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.CoRR, abs/1706.03762, 2017.
URL http://arxiv.org/abs/1706.03762 .

Quentin Vicens and Jeffrey S Kieft. Thoughts on how to think (and talk) about rna structure.Pro-
ceedings of the National Academy of Sciences, 119(17):e2112677119, 2022.

Michael T. Wol�nger, W. Andreas Svrcek-Seiler, Christoph Flamm, Ivo L. Hofacker, and Peter F.
Stadler. Ef�cient computation of RNA folding dynamics.Journal of Physics A: Mathematical
and General, 37(17):4731, April 2004. doi: 10.1088/0305-4470/37/17/005. URLhttps://
dx.doi.org/10.1088/0305-4470/37/17/005 .

Angela M Yu, Paul M. Gasper, Eric J. Strobel, Kyle E. Watters, Alan A. Chen, and Julius B. Lucks.
Computationally reconstructing cotranscriptional rna folding pathways from experimental data
reveals rearrangement of non-native folding intermediates.bioRxiv, 2018. doi: 10.1101/379222.
URL https://www.biorxiv.org/content/early/2018/07/28/379222 .

11

Accepted at the AI4NA workshop at ICLR 2025

A FURTHER BACKGROUND & RELATED WORK

In the following, we outline further background information and related work on RNA folding dy-
namics.

The folding dynamics of RNA can be described as a stochastic process in a state space, comprised of
a set of structures or conformations a given RNA sequence may assume, a move set that de�nes the
allowed elementary transitions between conformations in the state space, and transition rates for all
allowed transitions. Mathematically, this compiles into a continuous time Markov process governed
by the following master equation for the state probabilitiesPx (t) of observing statex at timet

dPx (t)
dt

=
X

y6= x

[Py (t)kxy � Px (t)kyx]

wherekxy is the transition rate from statey to statex. However, for RNA sequences of moderate
length, the master equation becomes too high dimensional to be solved analytically.

Generally,in silico analysis of RNA folding kinetics can be divided into nucleotide-resolution and
coarse-grained approaches. While the �rst yields a high level of simulation details, the latter typ-
ically allows studying larger systems, i.e. longer RNA chain lengths. The �rst publicly available
tool for computing RNA folding kinetics at nucleotide resolution isKinfold (Flamm et al., 2000),
a Markov-chain Monte Carlo (MCMC) method that is still considered one of the most accurate
approaches available (Fukunaga & Hamada, 2019). This accuracy, however, comes at the cost of
runtime asKinfold MCMC simulations typically require a large number of trajectories to obtain
reliable results. While it is possible to simulate the folding kinetics of RNA chains of several hun-
dreds of nucleotides, such calculations require substantial compute (Fukunaga & Hamada, 2019).
This limitation inspired accelerating techniques like memoization and parallelization (Aviram et al.,
2012), or shortcuts for the energy calculations of RNA secondary structures as implemented in
Kfold (Dykeman, 2015). In contrast, we developKinPFN as an extension to existing kinetic RNA
folding simulators to massively speed up every kinetic simulator that produces �rst passage times.

A different approach to simulating the dynamics of RNA folding is through analysis of the underly-
ing folding landscape. Such a landscape can be constructed from complete suboptimal folding with
barriers (Flamm et al., 2002), which provides an exact partitioning of the RNA conformation space
into basins of attraction, i.e. local optima of the energy landscape. These macro-states provide a nat-
ural coarse-graining of the folding landscape and allow to re-formulate the dynamics on a reduced
number of states, resulting in a massive speedup of computation time at comparable levels of detail.
This idea is implemented in the tooltreekin, which models the complete folding dynamics of RNA
molecules of length up to approximately 100 nucleotides as a continuous-time Markov process that
is solved by numerical integration (Wol�nger et al., 2004).

An Alternative to KinPFN are probabilistic density estimators like kernel density estimation
(KDE) (Bishop, 2006), Gaussian Mixture Models (GMM) (Bishop, 2006) or Bayesian Gaussian
Mixture Models, also known as Dirichlet Process GMMs (DP-GMM), which utilize a Variational
Bayesian estimation of Gaussian mixtures (Blei & Jordan, 2006). Similar toKinPFN, GMM and
DP-GMM aim to model the posterior predictive distribution as a multi-modal Gaussian distribution.
While GMMs struggle with complex data structures, especially when the number of modes is un-
known, Bayesian approaches like DP-GMM can dynamically adjust the number of mixture compo-
nents (McLachlan et al., 2019; Neal, 2000). Alternatively, kernel density estimation (KDE) offers a
non-parametric approach by estimating probability densities through the summation of kernels, like
Gaussians, over data points (Bishop, 2006). From a deep learning perspective, methods based on
normalizing �ows (Rezende & Mohamed, 2015), variational autoencoders (VAEs) (Kingma, 2013),
or a probabilistic transformer as proposed in (Franke et al., 2022), would be well suited for proba-
bility density estimation of RNA folding kinetics. However, these methods typically require large
amounts of training data which is not available for RNA folding kinetics. Instead, we approach the
problem of folding time prediction using a synthetic prior to train a PFN for direct approximation of
the CDF of folding time distributions.

For molecular dynamics (MD) simulations, AI methods have already been applied in different parts
of the MD pipeline. Deep learning methods like graph neural networks (GNNs) (Gilmer et al., 2017)
or variational autoencoders (VAEs) (Kingma, 2013), as well as reinforcement learning (RL) (Sut-
ton, 2018) are regularly used in these scenarios to e.g. enhance the sampling techniques during

12

Accepted at the AI4NA workshop at ICLR 2025

MD simulations, replace quantum mechanical force �eld simulations, or analyze the MD trajecto-
ries (Pra�snikar et al., 2024). However, current approaches mainly focus on small molecule data due
to the complexity of MD simulations for larger macromolecules and have the disadvantage that they
require large amounts of simulation data for training (Pra�snikar et al., 2024). For more information
on AI-based methods in the �eld of MD simulations, we refer the interested reader to a detailed
review of the �eld by Pra�snikar et al. (2024).

While, to the best of our knowledge,KinPFN is the �rst deep learning approach for RNA folding ki-
netics, PFNs were previously applied to multiple problems like few shot image classi�cation (Müller
et al., 2022), classi�cation for small tabular datasets (Müller et al., 2022; Hollmann et al., 2023), ex-
trapolation of learning curves (Adriaensen et al., 2023), Bayesian optimization and hyperparameter
optimization (M̈uller et al., 2023; Rakotoarison et al., 2024), and time series forecasting (Dooley
et al., 2024).

13

Accepted at the AI4NA workshop at ICLR 2025

B EXPONENTIAL Kinfold RUNTIME

Figure 4 shows the mean CPU times (in minutes), along with the upper bound standard deviations,
for simulating 10, 25, 50, 75, and 1000 folding processes — transitioning from an open chain to the
minimum free energy conformation — with the mean times calculated for different RNA sequence
lengths based on 50 distinct arti�cial RNA molecules per length. Despite the logarithmic scale on
the CPU time axis, the mean CPU time still shows a linear increase, highlighting the exponential
growth in the computational time required for these simulations. The calculations for Figure 4 were
performed on a single core of an AMD Milan EPYC 7513 CPU with 2.6 GHz.

Figure 4:Kinfold mean CPU times (in minutes), including the upper bound standard deviations for
simulating 10, 25, 50, 75, and 1000 folding processes over different RNA sequence lengths, based
on 50 distinct arti�cial RNA molecules per length.

14

Accepted at the AI4NA workshop at ICLR 2025

C SYNTHETIC FOLDING TIME DISTRIBUTION PRIOR DETAILS

In the following, we will describe our proposed synthetic prior and the method for sampling a single
batch of synthetic �rst passage times from it in more detail. The synthetic �rst passage timest
are sampled from a distributionp(k) generated from a family of multi-modal distributionsP k as
introduced in Section 2.1. The possible �rst passage time values across allp(k) range from10�

to 10� , with � = � 6 and� = 15, thereby limitingT 2 [Tstart; Tstop] by min(Tstart) = 10 � 6 and
max(Tstop) = 10 15, as we observed that this time range covers a very high fraction of possible RNA
folding processes.

Each distributionp(k) 2 P k is characterized byk Gaussian components, each with a mean� i and
a standard deviation� i , for i = 1 ; : : : ; k. The base means� base

i are uniformly distributed between
� + 1 = � 5 and� + 1 = 16 , and the standard deviations� i are uniformly distributed between
0:1 and � � �

5 = 4 :2. Further, we introduce a shifting parameter� , which is uniformly distributed
between� and� , i.e., � � U (� 6; 15) and is �xed for all i = 1 ; : : : ; k. The �nal means� i are then
given by:

� i = � base
i + �:

Given the parameters k and a valuex, the probability density function (PDF) of the multi-modal
Gaussian distribution is expressed as:

p(k ; x) =
kX

i =1

exp
�

�
(log x � � i)2

2� 2
i

�
:

C.1 SAMPLING FROM THE SYNTHETIC PRIOR OFRNA FIRST PASSAGETIMES

To sample a batch of synthetic �rst passage times of sizeB with a �xed number of times, i.e., number
of simulations per training example ofM from a multi-modal distributionp(k), we employ the
inverse transformation method also known as the Smirnov transformation. To do so we generate the
PDF p(k ; x) over a logarithmically spaced sequencex of lengthM from 10� to 10� . Then, to
normalize this PDF and therefore ensure a valid probability distribution, we calculate:

p̂(k ; x) =
p(k ; x)

R10�

10� p0(k ; �) d�
: (6)

Next, we compute the cumulative distribution function (CDF):

CDF(k ; x) =
Z x

10�
p̂(k ; �) d�: (7)

To ensure the CDF ranges from 0 to 1, we normalize it by dividing by the integral over the entire
range from10� to 10� :

CDF(k ; x) =

Rx
10� p̂(k ; �) d�

R10�

10� p̂(k ; �) d�
: (8)

This normalization ensures that the CDF is properly scaled, with CDF(k ; 10�) = 1 .

By inverting the CDF, we obtain the quantile function CDF� 1(k). To generate samples, we draw
uniform samplesui from a uniform distributionU(0; 1) for i = 1 ; : : : ; M and transform these
samples using the inverse CDF:

t i = CDF� 1(k ; ui);
wheret i are the sampled values from the distribution. We then encode these samples by applying a
logarithmic transformation:

t̂ i = log 10(t i):
Finally, constructing the prior output, for a batch of sizeB and a �xed number of �rst passage times
per exampleM , we generate the independent variablesX andY as follows:

X = 0B � M � 1;

Y i; : = [t̂1; t̂2; : : : ; t̂M] for i = 1 ; : : : ; B:

15

Accepted at the AI4NA workshop at ICLR 2025

Figure 5: Examples of the synthetic prior of RNA �rst passage times. We show an example of
a single CDF (red) and the corresponding multi-modal probability density function (PDF) (blue;
dotted line) generated from the synthetic prior (left). The distribution is bi-modal (k = 2) with
the parameters k = ((10 :86; 1:36); (2:38; 2:48)). The right plot visualizes ten example CDFs
generated from the synthetic prior.

16

Accepted at the AI4NA workshop at ICLR 2025

D KinPFN DETAILS

D.1 KinPFN HYPERPARAMETER

All hyperparameters in theKinPFN model are inherited from the transformer-based architec-
ture (Vaswani et al., 2017) of prior-data �tted networks (PFNs) as proposed by Müller et al. (2022).
These include the number of layers (nlayers), attention heads (nheads), embedding size (emsize), the
number of neurons in each hidden layer (nhidden), the learning rate for the Adam optimizer (Kingma
& Ba, 2015) (learning rate), the number of steps per epoch (steps), and the total number of epochs
(epochs). However, it is not entirely accurate to refer to ”epochs” in this context, as we are training
on synthetic data sampled from a prior, resulting in a single, in�nite epoch. In the context of PFNs,
the loss is updated after each step, which is why we describe these steps as hyperparameterized steps
per epoch. The term ”epochs” is used here primarily because it serves as a hyperparameter within
the code, providing a mechanism to control the training process. Another crucial parameter is the
sequence length (seqlen) of the input, representing the number of folding simulations (i.e., �rst
passage timesM) fed into the Transformer. This sequence length indicates the number of samples
drawn from a prior distributionp(k) 2 P k , as de�ned in Section 2.1. Additionally, given the in�-
nite nature of synthetic training data and the singular epoch, we set the dropout rate and the weight
decay to zero.

D.2 HYPERPARAMETEROPTIMIZATION

Given the uncertainty about the signi�cance of each parameter in the �nal model's performance,
we decided to utilize Neural Pipeline Search (NePS) (Stoll et al., 2023) for the hyperparameter op-
timization (HPO) of theKinPFN architecture. NePS is an open-source Python library that offers
state-of-the-art HPO methods, including Bayesian Optimization and multi-�delity methods like Hy-
perband (Li et al., 2017). In our setup, we chose Hyperband as our HPO technique. Hyperband
optimizes the search process by dynamically allocating resources, enabling faster identi�cation of
the best con�gurations. It strikes an effective balance between exploration and exploitation. Initially,
it explores a wide range of con�gurations with minimal resources, then progressively concentrates
resources on the most promising candidates while discarding poor-performing ones early through a
process of successive halving (Li et al., 2017).

As a performance metric for Hyperband to assess the quality of hyperparameter con�gurations, we
utilize the prior-data negative log-likelihood (NLL). This approach is equivalent to calculating the
Kullback-Leibler divergence between the approximated posterior predictive distribution (PPD) and
the true target PPD (M̈uller et al., 2022). Each con�guration trained by Hyperband is evaluated on a
newly introduced validation set, discribed in Section G.

We conducted two �nal iterations of the NePS Hyperband process, evaluating a total of 261 con-
�gurations. After completing the �rst iteration, we made slight adjustments to the search space.
Additionally, we setN = 25 for the validation pipeline in the �rst iteration andN = 10 for the
second iteration, representing the number of context �rst passage times for each approximation. To
ensure comparability across the validation of different hyperparameter con�gurations, we �xed the
indices of theseN context �rst passage times within the available time points, which, in a real-world
scenario, would typically be randomized since �rst passage times are usually obtained without any
order when running kinetic folding algorithms likeKinfold (Flamm et al., 2000).

Table 1 and 2 outline the hyperparameter search space used for our optimization process in iteration
one and two, respectively (differences are highlighted in blue). In the �rst iteration, we used a �xed
batch size of 50. However, in the second iteration, we reduced the batch size to 40 to accommodate
the adjusted search space, which brought us to our GPU memory limit. Since Hyperband requires a
�delity parameter to represent resource usage — in this case, computing time — we designate the
epochshyperparameter as the �delity parameter, de�ning its range between 250 and 3000. This is
directly related to thestepsper epoch, as the model runs a speci�ed number of steps during each
epoch, with each step involving training on a single batch. By tuning both the number of epochs
and steps per epoch, we control the amount of synthetic data sampled from the prior that our model
sees during training. Additionally, we adjust the learning rate for the Adam optimizer (Kingma &
Ba, 2015), setting a range between10� 5 and10� 3. This range is informed by preliminary training
sessions, where we observed that higher learning rates resulted in highly irregular learning curves

17

Accepted at the AI4NA workshop at ICLR 2025

Table 1: Hyperparameter search space for NePS Hyperband iteration 1.
Differences to iteration 2 are highlighted in blue

Hyperparameter Type Values/Range

epochs Integer [250, 3000] (hyperband �delity)
steps Integer [50, 100]
learningrate Float [10� 5, 10� 3] (log scale)
seqlen Categorical f 200, 300, 500, 700g
buckets Categorical f 100, 1000, 10000g
emsize Categorical f 256, 512g
nheads Categorical f 4, 8g
nhidden Categorical f 512, 1024g
nlayers Categorical f 2, 3, 4, 6, 8, 12g

Table 2: Hyperparameter search space for NePS Hyperband iteration 2.
Differences to iteration 1 are highlighted in blue

Hyperparameter Type Values/Range

epochs Integer [250, 3000] (hyperband �delity)
steps Integer [50, 100]
learningrate Float [10� 5, 10� 3] (log scale)
seqlen Categorical f 200, 300, 500, 700, 1000, 1400g
buckets Categorical f 100, 1000, 5000, 10000g
emsize Categorical f 256, 512g
nheads Categorical f 4, 8g
nhidden Categorical f 512, 1024g
nlayers Categorical f 2, 3, 4, 6, 8g

and, consequently, poor performance. We also evaluate models using different Transformer input
sequence lengths — speci�cally 200, 300, 500, 700, 1000, and 1400 — as this parameter represents
the number of �rst passage time samplesM drawn from each prior distributionp(k). Furthermore,
we assess the models with 100, 1000, 5000, and 10000 buckets over which we discretize the learned
posterior predictive distribution. For the embedding size, we evaluate options of 256 and 512, and
we asses 4 and 8 Transformer attention heads, which split the embedded input into smaller segments
for focused attention. We also explore various model complexities by varying the number of neurons
per hidden layer (512 and 1024) and the total number of layers, considering a broad range from 2 to
12 layers.

After both Hyperband iterations we identi�ed four highly promisingKinPFN architectures
f KinPFN1; : : : KinPFN4g. Among these,KinPFN1 andKinPFN3 demonstrated the minimal NLL
in the �rst and second NePS Hyperband iteration with 1.1761 (N = 25) and 1.2101 (N = 10),
respectively. Table 3 shows the NLL performance metrics of the found con�gurations across vari-
ous cutoffsN 2 f 10; 25; 50; 75; 100g. For each distribution example in the proposed validation set,
we randomly selected theN context times from the pool ofM = 1000 available times, ensuring a
broader and more generalizable evaluation, as the Hyperband validation pipeline was only based on
�xed N �rst passage times with �xed indices withinM .
While KinPFN4 was the con�guration with the second-best mean NLL loss with 1.2102 (N = 10)
after KinPFN3 in the second NePS iteration,KinPFN2 adopted the con�guration ofKinPFN1 but
trained on a larger Transformer input sequence length of 1400.

In the model analysis,KinPFN1 shows the best performance withN = 10 context �rst passage
times. However, for all other values ofN (N 2 f 25; 50; 75; 100g), KinPFN2 surpasses it. Addition-
ally, KinPFN2 outperforms both models from the second NePS iteration,KinPFN3 andKinPFN4,
based on the NLL losses, as demonstrated in Table 3. Based on these results, we selectedKinPFN2
as our �nalKinPFN model that was utilized in all experiments, as it shows the best overall perfor-
mance.

18

Accepted at the AI4NA workshop at ICLR 2025

Table 3: Comparison of four promisingKinPFN hyperparameter con�gurations identi�ed in two
NePS (Stoll et al., 2023), i.e., Hyperband (Li et al., 2017) iterations in terms of prior-data negative
log-likelihood loss (lower is better) with context �rst passage time cutoffsN 2 f 10; 25; 50; 75; 100g.

Con�guration Parameters First Passage TimesN

10 25 50 75 100

KinPFN1 seqlen=700, epochs=1000, steps=86, learn-

ing rate=2:5588748050825984 � 10� 5 ,

buckets=1000, emsize=256, nheads=4, nhidden=512,

nlayers=8, batchsize=50

1.348 1.254 1.225 1.216 1.210

KinPFN2 seqlen=1400, epochs=1000, steps=86, learn-

ing rate=2:5588748050825984 � 10� 5 ,

buckets=1000, emsize=256, nheads=4, nhidden=512,

nlayers=8, batchsize=50

1.378 1.246 1.207 1.195 1.189

KinPFN3 seqlen=1400, epochs=1000, steps=72, learn-

ing rate=3:867480144966054 � 10� 5 ,

buckets=10000, emsize=256, nheads=4, nhid-

den=1024, nlayers=4, batchsize=40

1.384 1.255 1.219 1.208 1.202

KinPFN4 seqlen=1400, epochs=333, steps=85, learn-

ing rate=7:062252166123585 � 10� 4 ,

buckets=10000, emsize=512, nheads=4, nhid-

den=1024, nlayers=2, batchsize=40

1.418 1.259 1.215 1.202 1.194

Final KinPFN Con�guration The �nal KinPFN model consists of 4.86 million parameters, fea-
turing a total of 8 layers, each with a hidden size of 512, 4 attention heads, an embedding size of
256, a learning rate of2:5588748050825984� 10� 5, and 1000 buckets. The model was trained for
1000 epochs, each consisting of 86 steps (with a batch size of 50), resulting in a total of 4,300,000
seen examples (calculated as 1000 x 86 x 50). Each example comprisedM = 1400 (synthetic)
�rst passage times from (theoretical) folding simulations, which represent the Transformer input
sequence length.

19

Accepted at the AI4NA workshop at ICLR 2025

E KDE AND DP-GMM DETAILS

To ensure an optimal comparison ofKinPFN with Kernel Density Estimation (KDE) and the Dirich-
let Process Gaussian Mixture Model (DP-GMM), we performed a random search hyperparameter
optimization (HPO). For KDE, we tuned thebandwidthhyperparameter over a logarithmic search
space ranging from10� 3 to 101, while for DP-GMM, we optimized theweight concentration prior
within a logarithmic range of10� 4 to 102. Both methods were evaluated using 1,000 con�gurations,
selecting the one with the lowest mean negative log-likelihood on our validation set, consisting of
2,019 real RNA �rst passage time distributions (Appendix G) using 25 context times for each ex-
ample. Figure 6 illustrates the HPO results for KDE (left) and DP-GMM (right). As a result of the
HPO, we selected abandwidthof 0.352 with a Gaussian kernel for KDE and aweight concentra-
tion prior of 9.79e-4 for DP-GMM and allowed a maximum of 100,000 iterations of Expectation-
Maximization (EM).

Figure 6: Hyperparameter optimization for Kernel Density Estimation (KDE) on thebandwidth
parameter (left) and for Dirichlet Process Gaussian Mixture Models (DP-GMM) on theweight con-
centration priorparameter (right).

20

Accepted at the AI4NA workshop at ICLR 2025

F METRICS

In our experiments and evaluations, we rely on the prior-data negative log-likelihood (NLL) between
the approximated posterior predictive distribution (PPD) and the true �rst passage time distribution
as a primary performance metric, consistent with its use during training and hyperparameter opti-
mization (HPO) (Section 2.2):

` � = E(0 ;t test) [D train� p(k) [� logq� (t testj0test; D train)] . (9)

When comparingKinPFN to other methods, such as Gaussian Mixture Models (GMM), Dirichlet
Process Gaussian Mixture Models (DP-GMM), and Kernel Density Estimation (KDE), we consis-
tently use the mean negative log-likelihood (NLL) as the evaluation metric. This choice is motivated
by the fact that the mean NLL re�ects how effectively each method has learned the underlying pos-
terior predictive distributions (PPDs) of the �rst passage times. Minimizing the NLL aligns with
minimizing the Kullback-Leibler (KL) divergence between the estimated PPD and the ground truth
PPD (Müller et al., 2022), making it a robust measure of model performance.

As our main objective is approximating the CDFs of the �rst passage times, we additionally evalu-
ate the performance by measuring the mean absolute error (MAE) and Kolmogorov-Smirnov (KS)
statistic between the CDF of the approximated PPDF̂ (t) and the true target CDFF (t). For a single
CDF approximation ofKinPFN, the mean absolute error (MAE) is de�ned as the average of the ab-
solute differences between the predicted CDF values and the ground truth CDF values for a speci�c
sequence of folding times. Mathematically, it can be expressed as:

MAE =
1

M

MX

i =1

�
�
� F̂ (t i) � F (t i)

�
�
� , (10)

whereM is the number of available ground truth �rst passage time points for the particular example
RNA sequence,̂F (t i) is the predicted CDF value at thei -th �rst passage timet i , computed by
KinPFN, F (t i) is the ground truth CDF value at thei -th �rst passage timet i .

Similarly, the KS statistic is calculated as the maximum absolute difference between the predicted
and true CDFs:

KS Statistic= max
y

�
�
� F̂ (t i) � F (t i)

�
�
� ,

where lower values indicate a better �t of the model to the true distribution.

21

Accepted at the AI4NA workshop at ICLR 2025

G VALIDATION AND TEST DATA

We introduce two new datasets: a validation set and a test set, both consisting of real RNA �rst
passage times. The validation set contains 2,016 randomly generated RNA sequences, while the test
set includes 635 sequences. The times were acquired by simulating the folding process of the RNAs,
starting from an open-chain conformation and progressing to the molecule's minimum free energy
conformation with the kinetic folding simulatorKinfold (Flamm et al., 2000). Figure 7 illustrates
the distribution of RNA sequence lengths across both datasets. The validation set, used throughout
all NePS (Stoll et al., 2023) iterations (i.e., Hyperband (Li et al., 2017)), is shown in dark blue,
while the test set, shown in dark red, is reserved for �nalKinPFN model evaluations (see Section 4).
Importantly, these two datasets are mutually independent in terms of RNA primary sequences and
secondary structures.

Figure 7: Number of examples by RNA sequence length ranges for the custom validation set used
in all NePS (Stoll et al., 2023) i.e., Hyperband (Li et al., 2017) iterations and the custom testing set
used for �nalKinPFN model evaluations (Section 4). Both sets are independent of each other with
respect to RNA primary sequence and secondary structures.

22

Accepted at the AI4NA workshop at ICLR 2025

H ADDITIONAL EVALUATIONS

H.1 SYNTHETIC PRIOR APPROXIMATIONS

We evaluate our proposed model using synthetic data generated from the same prior distribu-
tion employed during training (see Section 2.1). We approximate 10,000 synthetic �rst pas-
sage time distributions, varying the cutoff points for the number of context �rst passage times
N 2 f 10; 25; 50; 75; 100g. This allows us to evaluate the model's performance as the number
of context points provided toKinPFN increases. For each case, we sampleM = 1000 �rst passage
times from the prior distribution. The performance is measured in terms of the posterior predic-
tive distribution (PPD) mean negative log-likelihood (NLL) and the cumulative distribution function
(CDF) mean absolute error (MAE), computed over all 10,000 examples at each cutoffN . Table 4
presents the results of this evaluation. We observe signi�cant improvements in both the NLL and
MAE when increasing the number of context points fromN = 10 to N = 25 and fromN = 25
to N = 50. BeyondN = 50, while the loss continues to decrease, the rate of improvement slows
down as the context size grows fromN = 75 to N = 100.

Table 4: Performance evaluation ofKinPFN on 10,000 synthetic �rst passage time distributions.
Metrics are shown for different context �rst passage time cutoffsN 2 f 10; 25; 50; 75; 100g, mea-
sured in terms of negative log-likelihood (NLL) and mean absolute error (MAE). Lower values
indicate better performance.

Performance Metric First Passage TimesN

10 25 50 75 100

Mean Prior-Data NLL 2.4265 2.1364 2.0596 2.0388 2.0281
Mean Absolute Error 0.0878 0.0553 0.0388 0.0321 0.0275

H.2 COMPARISONKinPFN, GMM, DP-GMM AND KDE

To further evaluate our model, we compareKinPFN against multiple Gaussian Mixture Models
(GMMs) and Dirichlet Process Gaussian Mixture Models (DP-GMMs) using various initial modal-
ity assumptions. Speci�cally, we consider mixture models with modalitiesk 2 f 2; 3; 4; 5g, align-
ing with the assumptions outlined in our synthetic prior (Section 2.1), denoted asGMMk and
DP-GMMk . For all evaluations, the models were provided identical context �rst passage times.
Both GMM and DP-GMM models were allowed a maximum of 100,000 iterations of Expectation-
Maximization (EM). Additionally, we compareKinPFN to a Kernel Density Estimator (KDE) that
we optimized for its bandwidth hyperparameter (Appendix E), as discussed in Section 4. The results
for MAE and KS are shown in Table 6 and 7, respectively. We observe thatKinPFN outperforms
all other methods from context size of 25 FPTs onwards. Results on larger context sizes are shown
in Table 8, 9 and 10 demonstrating a constant improvement of the predictions with growing context
sizes.

23

Accepted at the AI4NA workshop at ICLR 2025

Table 5: Evaluation ofKinPFN, KDE, and multipleGMMk andDP-GMMk models with different
initial modality assumptionsk 2 f 2; 3; 4; 5g on a newly introduced testing set comprising 635 real-
world �rst passage time distributions in terms of prior-data negative log-likelihood loss (lower is
better) with context �rst passage time cutoffsN 2 f 10; 25; 50; 75; 100g.

Method First Passage TimesN

10 25 50 75 100

KinPFN 1.3739 1.2435 1.2047 1.1916 1.1858
GMM2 2.3122 1.3612 1.2355 1.2036 1.1933
GMM3 5.2469 1.5830 1.2838 1.2132 1.1910
GMM4 13.1325 1.9922 1.3676 1.2480 1.2119
GMM5 37.5845 2.7708 1.4957 1.2953 1.2374
DP-GMM2 1.6285 1.3529 1.2618 1.2305 1.2150
DP-GMM3 1.6268 1.3549 1.2653 1.2323 1.2155
DP-GMM4 1.6294 1.3558 1.2663 1.2337 1.2169
DP-GMM5 1.6256 1.3572 1.2675 1.2337 1.2175
KDE 1.4370 1.2559 1.2133 1.2003 1.1957

Table 6: Evaluation ofKinPFN, KDE, and multipleGMMk andDP-GMMk models with different
initial modality assumptionsk 2 f 2; 3; 4; 5g on a newly introduced testing set comprising 635 real-
world �rst passage time distributions in terms of mean absolute error (lower is better) with context
�rst passage time cutoffsN 2 f 10; 25; 50; 75; 100g.

Method First Passage TimesN

10 25 50 75 100

KinPFN 0.0843 0.0561 0.0393 0.0333 0.0296
GMM2 0.1003 0.0848 0.0790 0.0773 0.0756
GMM3 0.0988 0.0866 0.0815 0.0801 0.0778
GMM4 0.0952 0.0860 0.0816 0.0799 0.0777
GMM5 0.0929 0.0842 0.0809 0.0797 0.0778
DP-GMM2 0.0866 0.0774 0.0761 0.0756 0.0745
DP-GMM3 0.0867 0.0774 0.0763 0.0762 0.0751
DP-GMM4 0.0865 0.0770 0.0763 0.0763 0.0751
DP-GMM5 0.0860 0.0768 0.0762 0.0760 0.0751
KDE 0.0813 0.0690 0.0653 0.0644 0.0630

Table 7: Evaluation ofKinPFN, KDE, and multipleGMMk andDP-GMMk models with different
initial modality assumptionsk 2 f 2; 3; 4; 5g on a newly introduced testing set comprising 635
real-world �rst passage time distributions in terms of Kolmogorov-Smirnov (KS) statistic (lower is
better) with context �rst passage time cutoffsN 2 f 10; 25; 50; 75; 100g.

Method First Passage TimesN

10 25 50 75 100

KinPFN 0.1615 0.1098 0.0809 0.0700 0.0632
GMM2 0.2084 0.1705 0.1586 0.1541 0.1510
GMM3 0.2210 0.1794 0.1644 0.1586 0.1537
GMM4 0.2293 0.1829 0.1674 0.1604 0.1547
GMM5 0.2352 0.1836 0.1695 0.1625 0.1564
DP-GMM2 0.1695 0.1505 0.1496 0.1488 0.1471
DP-GMM3 0.1694 0.1506 0.1499 0.1495 0.1475
DP-GMM4 0.1691 0.1500 0.1500 0.1496 0.1475
DP-GMM5 0.1682 0.1494 0.1499 0.1491 0.1476
KDE 0.1590 0.1344 0.1278 0.1256 0.1231

24

Accepted at the AI4NA workshop at ICLR 2025

Table 8: Evaluation ofKinPFN, KDE, and multipleGMMk andDP-GMMk models with different
initial modality assumptionsk 2 f 2; 3; 4; 5g on a newly introduced testing set comprising 635 real-
world �rst passage time distributions in terms of prior-data negative log-likelihood loss (lower is
better) with context �rst passage time cutoffsN 2 f 250; 500; 750; 1000g.

Method First Passage TimesN

250 500 750 1000

KinPFN 1.1756 1.1716 1.1703 1.1697
GMM2 1.1764 1.1715 1.1696 1.1690
GMM3 1.1621 1.1542 1.1519 1.1508
GMM4 1.1612 1.1506 1.1476 1.1458
GMM5 1.1642 1.1499 1.1458 1.1438
DP-GMM2 1.1853 1.1735 1.1700 1.1683
DP-GMM3 1.1793 1.1627 1.1565 1.1533
DP-GMM4 1.1802 1.1631 1.1562 1.1526
DP-GMM5 1.1809 1.1637 1.1566 1.1529
KDE 1.1874 1.1841 1.1832 1.1828

Table 9: Evaluation ofKinPFN, KDE, and multipleGMMk andDP-GMMk models with different
initial modality assumptionsk 2 f 2; 3; 4; 5g on a newly introduced testing set comprising 635 real-
world �rst passage time distributions in terms of mean absolute error (lower is better) with context
�rst passage time cutoffsN 2 f 250; 500; 750; 1000g.

Method First Passage TimesN

250 500 750 1000

KinPFN 0.0205 0.0155 0.0137 0.0126
GMM2 0.0742 0.0730 0.0730 0.0728
GMM3 0.0764 0.0756 0.0756 0.0754
GMM4 0.0763 0.0754 0.0753 0.0751
GMM5 0.0762 0.0751 0.0751 0.0747
DP-GMM2 0.0746 0.0741 0.0739 0.0736
DP-GMM3 0.0760 0.0757 0.0759 0.0757
DP-GMM4 0.0759 0.0756 0.0758 0.0756
DP-GMM5 0.0759 0.0756 0.0758 0.0756
KDE 0.0624 0.0617 0.0617 0.0615

Table 10: Evaluation ofKinPFN, KDE, and multipleGMMk andDP-GMMk models with different
initial modality assumptionsk 2 f 2; 3; 4; 5g on a newly introduced testing set comprising 635
real-world �rst passage time distributions in terms of Kolmogorov-Smirnov (KS) statistic (lower is
better) with context �rst passage time cutoffsN 2 f 250; 500; 750; 1000g.

Method First Passage TimesN

250 500 750 1000

KinPFN 0.0484 0.0389 0.0359 0.0336
GMM2 0.1482 0.1465 0.1463 0.1460
GMM3 0.1493 0.1466 0.1467 0.1462
GMM4 0.1489 0.1462 0.1461 0.1454
GMM5 0.1499 0.1464 0.1462 0.1454
DP-GMM2 0.1474 0.1472 0.1469 0.1465
DP-GMM3 0.1483 0.1473 0.1469 0.1463
DP-GMM4 0.1481 0.1471 0.1466 0.1461
DP-GMM5 0.1482 0.1470 0.1465 0.1460
KDE 0.1217 0.1205 0.1206 0.1204

25

	Introduction
	Approximation of RNA Folding Time Distributions
	A Synthetic Prior for RNA Folding Time Distributions
	PFNs for the Approximation of RNA Folding Time Distributions

	Related Work
	Experiments
	Conclusion, Limitations & Future Work
	Further Background & Related Work
	Exponential Kinfold Runtime
	Synthetic Folding Time Distribution Prior Details
	Sampling from the Synthetic Prior of RNA First Passage Times

	KinPFN Details
	KinPFN Hyperparameter
	Hyperparameter Optimization

	KDE and DP-GMM Details
	Metrics
	Validation and Test Data
	Additional Evaluations
	Synthetic Prior Approximations
	Comparison KinPFN, GMM, DP-GMM and KDE
	Additional KinPFN Approximation Examples
	KinPFN Riemann Distribution Visualization
	Eukaryotic transfer and ribosomal RNA
	Approximations for additional RNA Types
	Application: RNA Folding Efficiency Analysis

