
F1000Research

Open Peer Review

, Parc Científic deAngelika Merkel

Barcelona Spain

, Harvard Public School ofBrad Chapman

Health USA

, University of Freiburg GermanyBjörn Voß

Discuss this article

 (0)Comments

3

2

1

SOFTWARE TOOL ARTICLE

 ViennaNGS: A toolbox for building efficient next-
 generation sequencing analysis pipelines [v2; ref status:

indexed, http://f1000r.es/5mq]
Michael T. Wolfinger , Jörg Fallmann , Florian Eggenhofer , Fabian Amman1,4

Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090, Vienna, Austria
Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Dr. Bohr-Gasse

9, A-1030 Vienna, Austria
Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna,

Austria
Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Dr. Bohr-Gasse 9,

A-1030 Vienna, Austria

Abstract
Recent achievements in next-generation sequencing (NGS) technologies lead
to a high demand for reuseable software components to easily compile
customized analysis workflows for big genomics data. We present ViennaNGS,
an integrated collection of Perl modules focused on building efficient pipelines
for NGS data processing. It comes with functionality for extracting and
converting features from common NGS file formats, computation and
evaluation of read mapping statistics, as well as normalization of RNA
abundance. Moreover, ViennaNGS provides software components for
identification and characterization of splice junctions from RNA-seq data,
parsing and condensing sequence motif data, automated construction of
Assembly and Track Hubs for the UCSC genome browser, as well as wrapper
routines for a set of commonly used NGS command line tools.

1-3 1 1 1,4

1

2

3

4

 Referee Status:

 Invited Referees

version 2
published
20 Jul 2015

version 1
published
20 Feb 2015

 1 2 3

report report

report

report

 20 Feb 2015, :50 (doi:)First published: 4 10.12688/f1000research.6157.1
 20 Jul 2015, :50 (doi:)Latest published: 4 10.12688/f1000research.6157.2

v2

Page 1 of 16

F1000Research 2015, 4:50 Last updated: 21 JUL 2015

http://f1000research.com/articles/4-50/v2
http://f1000research.com/articles/4-50/v2
http://f1000r.es/5mq
http://f1000research.com/articles/4-50/v2
http://f1000research.com/articles/4-50/v1
http://dx.doi.org/10.12688/f1000research.6157.1
http://dx.doi.org/10.12688/f1000research.6157.2
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.6157.2&domain=pdf&date_stamp=2015-07-20

F1000Research

 Michael T. Wolfinger ()Corresponding author: michael.wolfinger@univie.ac.at
 Wolfinger MT, Fallmann J, Eggenhofer F and Amman F. How to cite this article: ViennaNGS: A toolbox for building efficient next-

 2015, :50 (doi: generation sequencing analysis pipelines [v2; ref status: indexed,]http://f1000r.es/5mq F1000Research 4
)10.12688/f1000research.6157.2

 © 2015 Wolfinger MT . This is an open access article distributed under the terms of the ,Copyright: et al Creative Commons Attribution Licence
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the
article are available under the terms of the (CC0 1.0 Public domain dedication).Creative Commons Zero "No rights reserved" data waiver

 This work was funded by the Austrian Science Fund (FWF projects F43 to MTW, FA and FE) and the Research PlatformGrant information:
“Decoding mRNA decay in inflammation” by the University of Vienna to JF.

 Competing interests: No competing interests were disclosed.

 20 Feb 2015, :50 (doi:) First published: 4 10.12688/f1000research.6157.1
 21 Jul 2015, :50 (doi:)First indexed: 4 10.12688/f1000research.6157.2

Page 2 of 16

F1000Research 2015, 4:50 Last updated: 21 JUL 2015

http://f1000r.es/5mq
http://dx.doi.org/10.12688/f1000research.6157.2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://dx.doi.org/10.12688/f1000research.6157.1
http://dx.doi.org/10.12688/f1000research.6157.2

            Amendments from Version 1

We have addressed the reviewers’ suggestions and updated
the manuscript accordingly at different places. Specifically, we
have worked out what is unique about the ViennaNGS suite in
the Introduction and added a new Applications section where we
put emphasis on the process of building custom NGS analysis
pipelines by means of the ViennaNGS tutorials. Moreover,
we have benchmarked CPU and memory consumption of our
package, providing results in Table 1 and added a paragraph
on the internal testing strategy. In addition, we highlight past and
future use cases and development plans of the software and
mention possible parallelization scenarios in the Discussion.

See referee reports

REVISED

Introduction
Next-generation sequencing (NGS) technologies have influenced
both our understanding of genomic landscapes as well as our attitude
towards handling big biological data. Emerging functional genom-
ics methods based on high-throughput sequencing allow investiga-
tion of highly specialized and complex scientific questions, which
continuously poses challenges in the design of analysis strategies.
Moreover, the demand for efficient data analysis methods has dra-
matically increased. While a typical NGS analysis workflow is built
on a cascade of routine tasks, individual steps are often specific for
a certain assay, e.g. depend on a particular sequencing protocol.

Here, we present ViennaNGS, a Perl distribution that integrates
high-level routines and wrapper functions for common NGS
processing tasks. ViennaNGS provides tools and functionality
for the development of custom NGS pipelines, rather than being
an established pipeline per se. It comes with a set of utility scripts
that serve as reference implementation for most library functions
and can readily be applied for specific tasks or integrated as-is into
tailor-made pipelines. Moreover, we provide extensive documenta-
tion, including a dedicated tutorial that showcases core features of
the software and discusses common application scenarios.

A set of NGS analysis pipelines are available for general1,2, and
specialized assays such as de-novo motif discovery3. While these
tools mostly cover the elementary steps of an analysis workflow,
they often represent custom-tailored solutions that lack flexibility.
Web-based approaches like Galaxy4 cover a wide portfolio of avail-
able applications, however they do not offer enough room for power
users who are used to the benefits of the command line.

The recently published HTSeq framework5 as well as the biotoolbox
package provide library modules for processing high-throughput
data. While both packages implement NGS analysis functionality
in a coherent manner, we encountered use cases that were not cov-
ered by these tools.

ViennaNGS is a pure Perl-based alternative to existing approaches,
addressing the broad Perl community in bioinformatics. It partly
builds on BioPerl 6 and has been designed in an object-oriented
manner based on the Moose object framework, thus allowing to
write modular code with different libraries that engage with one

another. Moose is based in large part on the Perl 6 object system,
thererby enabling rapid conversion to Perl 6. While there is ongoing
discussion in the BioPerl community regarding possible directions
towards a shift to Perl 6, ViennaNGS is, to our knowledge, the
first toolbox for NGS data processing that can be regarded ready
for Perl 6.

Motivation
The motivation for this contribution emerged in the course of
the research consortium “RNA regulation of the transcriptome”
(Austrian Science Fund project F43), which brings together more
than a dozen experimental groups with various thematic back-
grounds. In the line of this project it turned out that complex tasks
in NGS analysis could easily be automated, whereas linking indi-
vidual steps was very labour-intensive. As such, it became apparent
that there is a strong need for modular and reusable software com-
ponents that can efficiently be assembled into different full-fledged
NGS analysis pipelines. Development of the ViennaNGS suite
was triggered by two driving forces. On the one hand we wanted to
return to the open source community our own contribution, which
itself is heavily based and dependent on open source software. On
the other hand, beside “open science” we advocate for the concept
of “reproducible science”7. Unfortunately, and to some extent sur-
prising, bioinformatics analyses are often not fully reproducible due
to inaccessibility of tools (keyword “in-house script”) or software
versions used. It is therefore essential to ensure the entire chain of
reproducibility from data generation to interpretation in the analysis
of biological data.

Applications
ViennaNGS has been designed to facilitate the process of builing
NGS pipelines. To this end, the toolbox comes with several mod-
ules and library functions that can easily be combined into custom
analysis workflows. We provide step by guides in the form of dedi-
cated tutorials to lead prospective users through the development of
basic NGS analysis pipelines.

Building a pipeline with ViennaNGS
ViennaNGS::Tutorial is a showcase for building custom
analysis pipelines and consists of several chapters, each illustrating
an example workflow together with a possible solution based on
ViennaNGS library functions. Tutorial #0 shows how to deduce
both qualitative and quantitative parameters from mapped reads,
together with visual data representation. Tutorial #1 exemplifies the
detection of sequence motifs in close proximity to gene start loci
in order to identify regulatory regions. Tutorial #2 exemplifies the
visualization of highly expressed genes together with a 50 nt region
upstream of the gene start and Tutorial #3 explains how to construct
UCSC genome browser Assembly Hubs. The tutorials are meant to
assist prospective users applying ViennaNGS to implement their
own full-fledged pipelines. Moreover, we used the tutorials to dem-
onstrate the run time and memory requirement of sample imple-
mentations of ViennaNGS in a real world scenario (Table 1).

Utilities
The ViennaNGS suite comes with a collection of complemen-
tary executable Perl scripts for accomplishing routine tasks often
required in NGS data processing. These command line utilities

Page 3 of 16

F1000Research 2015, 4:50 Last updated: 21 JUL 2015

https://code.google.com/p/biotoolbox
https://metacpan.org/pod/Moose
http://bioperl.org/wiki/BioMoose

serve as reference implementations of the routines implemented in
the library and can readily be used for atomic tasks in NGS data
processing. Table 2 lists the utilities and gives a short description
of their functionality.

Methods
The major design consideration for the ViennaNGS toolbox was
to make available modular and reuseable code for NGS processing
in a popular scripting language. We therefore implemented themati-
cally related functionality in different Perl modules under the Bio
namespace (Figure 1).

Our focus is on consistent versioning, facilitated through Github
hosting. In addition, ViennaNGS releases are available via the
Comprehensive Perl Architecture Network (CPAN), thereby ena-
bling users to get back to previous versions at any time in order to
reenact conclusions drawn from shared biological data.

ViennaNGS has been designed to close gaps in established
analysis workflows by covering a wide range of processing steps
from raw data to data visualization. In the following we intro-
duce individual ViennaNGS components and describe their main
functionality.

Table 2. Overview of the complementary utilities shipped with ViennaNGS. While some of these scripts are
re-implementations of functionality available elsewhere, they have been developed primarily as reference
implementation of the library routines to help prospective ViennaNGS users getting started quickly with the
development of custom pipelines.

Utility Description

assembly_hub_constructor.pl Construct Assembly Hubs for UCSC genome browser visualization

bam_quality_stat.pl Compute mapping/quality statistics along with publication-ready figures

bam_split.pl Split BAM files by strand

bam_to_bigwig.pl Produce BigWig coverage profiles from BAM files for visualization

bam_uniq.pl Filter uniquely and multi mapped reads from BAM files

bed2bedGraph.pl Convert BED to (strand specific) BedGraph format

extend_bed.pl Extend genomic intervals in BED format at the 5′, 3′, or both ends

gff2bed.pl Convert bacterial RefSeq GFF3 annotation to BED12 format

kmer_analysis.pl Count k-mers of predefined length in FastQ and Fasta files

MEME_xml_motif_extractor.pl Compute basic statistics from MEME XML output

newUCSCdb.pl Create a new genome database in a local UCSC genome browser
instance

normalize_multicov.pl Compute normalized expression data in RPKM and TPM from read
counts

sj_visualizer.pl Convert splice junctions in segemehl BED6 splice junction format to
BED12

splice_site_summary.pl Identify and characterize splice junctions from RNA-seq data

track_hub_constructor.pl Construct Track Hubs for UCSC genome browser visualization

trim_fastq.pl Trim sequence and quality fields in FastQ format

Table 1. Time and memory requirements of exemplary implementations of the
ViennaNGS core modules, as implemented in the ViennaNGS tutorials. Data were
collected on a single core of a desktop workstation (Intel® Core™ i7-4771 CPU @ 3.50GHz;
32GB RAM).

Script Input Run time RAM

Tutorial #0 4GB BAM file 50m 30s 5.1 GB

Tutorial #1 28GB Fasta, 16KB BED, 292KB XML 0m 38s 219 MB

Tutorial #2 4GB BAM, 28GB Fasta, 16KB BED 7m 49s 663 MB

Tutorial #3 5MB BigBed, 4MB BigWig, 4MB BigBed, 3MB BigWig 0m 1s 213MB

Page 4 of 16

F1000Research 2015, 4:50 Last updated: 21 JUL 2015

BAM handling and filtering
Once mapped to a reference genome, NGS data is typically stored
in the widely used SAM/BAM file format. BAM is a binary for-
mat, which can easily be converted into text-based SAM format via
samtools8 for downstream analysis. However, modern NGS assays
produce hundreds of millions of reads per sample, hence SAM files
tend to become excessively large and can have a size of several
hundred gigabytes. Given that storage resources are always limited,
strategies to efficiently retrieve mapping information from BAM
format are an asset. To accomodate that, we provide functionality
for querying global mapping statistics and extracting specific align-
ment information from BAM files directly.

ViennaNGS::BamStat extracts both qualitative and quantita-
tive information from BAM files, i.e. the amount of total align-
ments, aligned reads, as well as uniquely and multi mapped reads.
Numbers are reported individually for single-end reads, paired-end
fragments and pairs missing a mate. Quality-wise ViennaNGS::
BamStat collects data on edit distance in the alignments, fraction
of clipped bases, fraction of matched bases, and quality scores for
entire alignments. Subsequently, ViennaNGS::BamStatSum-
mary compares different samples in BAM format and illustrates
results graphically. Summary information is made available in CSV
format to facilitate downstream processing.

Efficient filtering of BAM files is among the most common tasks in
NGS analysis pipelines. Building on the Bio-SamTools distribution,
ViennaNGS::Bam provides a set of convenience routines for rapid
handling of BAM files, including filters for unique and multiple
alignments as well as functionality for splitting BAM files by strand,
thereby creating two strand-specific BAM files. Results can option-
ally be converted to BedGraph or BigWig formats for visualization
purposes.

Genomic annotation
Proper handling of genomic intervals is essential for NGS analysis
pipelines. Several feature annotation formats have gained accept-
ance in the scientific community, including BED, GTF, GFF, etc.,
each having its particular benefits and drawbacks. While annotation
for a certain organism is often only available in a specific format,
interconversion among these formats can be regarded a routine task,
and a pipeline should be capable of processing as many formats as
possible.

We address this issue at different levels. On the one hand, we pro-
vide ViennaNGS::AnnoC, a lightweight annotation converter
for non-spliced genomic intervals, which can be regarded a simple
yet powerful solution for conversion of bacterial annotation data.
On the other hand we have developed an abstract representation of
genomic features via generic Moose-based classes, which provide
functionality for efficient manipulation of BED4, BED6, BED12
and GTF/GFF elements, respectively, and allow for BED format
conversion facilitated by ViennaNGS::Bed. ViennaNGS::
MinimalFeature represents an elementary genomic inter-
val, characterized by chromosome, start, end and strand. Vien-
naNGS::Feature extends ViennaNGS::MinimalFeature
by two attributes, name and score, thereby creating a representation
of a single BED6 element. ViennaNGS::FeatureChain pools
a set of ViennaNGS::Feature objects via an array reference.
All intervals of interest can be covered by a ViennaNGS::Fea-
tureLine object, which holds a hash of references to Vien-
naNGS::FeatureChain objects (Figure 2).

Figure 1. Schematic overview of ViennaNGS components. Core
modules can be combined within a data analysis script in a flexible
manner to meet individual analysis objectives and experimental
setup.

Figure 2. Class diagram illustrating the relations among generic
Moose classes which are used as abstract representations of
genomic intervals (only attributes are shown).

Page 5 of 16

F1000Research 2015, 4:50 Last updated: 21 JUL 2015

https://metacpan.org/release/Bio-SamTools

This framework can handle annotation data by providing abstract
data representations of genomic intervals such as exons, introns,
splice junctions etc. It allows for efficient description and manipu-
lation of genomic features up to the level of transcripts (Figure 3).
Conversely, it is highly generic and can be extended to hierarchi-
cally higher levels such as genes composed of different transcript
isoforms or clusters of paralogous genes.

Visualization
Another cornerstone of NGS analysis pipelines is graphical rep-
resentation of mapped sequencing data. In this context a standard
application is visualization of ChIPseq peaks or RNA-seq cover-
age profiles. The latter are typically encoded in Wiggle format, or
its indexed binary variant, BigWig, which can readily be displayed
within a genome browser. In the same line, genomic annotation and
intervals are often made available in BigBed format, an indexed
binary version of BED. ViennaNGS::Util comes with wrapper
routines for automated conversion from common formats like BAM
to BigWig or BED to BigBed via third-party utilities9. In addition,
we have implemented interfaces for a selection of BEDtools10 com-
ponents as well as a collection of auxiliary routines. The UCSC
genome browser allows to display potentially large genomic data
sets, that are hosted at web-accessible locations by means of Track
Hubs11. On a more general basis this even works for custom organ-
isms that are not supported by default through the UCSC genome
browser, via Assembly Hubs. A typical use case is visualization
of genomic annotation, RNA-seq coverage profiles and ChIPseq
peaks for Arabidopsis thaliana (which is not available through
the generic UCSC browser) via a locally hosted Assembly Hub.
ViennaNGS::UCSC provides all relevant routines for automatic
construction of Assembly and Track Hubs from genomic sequence
and/or annotation. Besides automated Assembly and Track Hub
generation, we support deployment of custom organism databases
in local mirrors of the UCSC genome browser.

Gene expression and normalization
RNA-seq has become a standard approach for gene and transcript
quantification by means of measuring the relative amount of RNA
present in a certain sample or under a specific condition, thus ide-
ally providing a good estimate for the relative molar concentra-
tion of RNA species. Simple “count-based” quantification models
assume that the total number of reads mapping to a region can be
used as a proxy for RNA abundance12. A good measure for tran-
script abundance is ideally as closely proportional to the relative
molar concentration of a RNA species as possible. Various meas-
ures have been proposed, one of the most prominent being RPKM
(reads per kilobase per million). It accounts for different transcript
lengths and sequencing depth by normalizing by the number of
reads in a specific sample, divided by 106. It has, however, been
shown that RPKM is not appropriate for measuring the relative
molar concentration of a RNA species due to normalization by the
total number of reads13,14.

Alternative measures that overcome this shortcoming have been
suggested, e.g. TPM (transcript per million), where a proxy for the
total number of transcript samples considering the sequencing reads
per gene is used for normalization, rather than the total number of
mapped reads. We provide routines for the computation of RPKM
and TPM values for genomic intervals from raw read counts within
ViennaNGS::Expression.

Characterization of splice junctions
ViennaNGS::SpliceJunc addresses a more specific prob-
lem, namely characterization of splice junctions which is becoming
increasingly relevant for understanding alternative splicing events.
This module provides code for identification and characterization
of splice junctions from short read mappers. It can detect novel
splice junctions in RNA-seq data and generate visualization files.
While we have focused on processing the output of segemehl15,16,
the module can easily be extended for other splice-aware split read
mappers.

Documentation
The ViennaNGS suite comes with extensive documentation based
on Perl’s POD system, thereby providing a single documentation
base which is available through different channels, e.g. on the com-
mand line via the perldoc utility or on the Web via CPAN.

Testing
In the development process of the ViennaNGS suite special empha-
sis has been placed on code integrity, thereby ensuring that the soft-
ware produces correct results as novel features are added and the
code base is maintained. To achieve that, we make use of the Perl
testing framework, which allows to build automated tests that are
run at installation time and highlight any issues with code or third
party dependencies. Furthermore this includes comparison of MD5
sums for output files produced by ViennaNGS routines, thereby
enabling consistency and reproducibility of biological results.

Use cases
We have successfully applied components of ViennaNGS in the
course of an ongoing, large scale collaboration project focusing on
RNA regulation. It has been used with different genomics assays
in a wide range of biological systems, including human, plants and

Figure 3. Schematic representation of genomic interval classes
in terms of their corresponding feature annotation. Simple
intervals (“features”) are characterized by ViennaNGS::Feature
objects (bottom box). At the next level, ViennaNGS::FeatureChain
bundles these, thereby maintaining individual annotation chains for
e.g. UTRs, exons, introns, splice junctions, etc. (middle box). The
topmost level is given by ViennaNGS::FeatureLine objects,
representing individual transcripts.

Page 6 of 16

F1000Research 2015, 4:50 Last updated: 21 JUL 2015

bacteria. While we have primarily applied ViennaNGS in com-
bination with the short read aligner segemehl15,16, e.g. in a study
addressing ribosome associated mRNA degradation in Drosophila17,
it has also been used recently with Tophat18 output in a large scale
transcriptome study of Ebola and Marburg virus infection in human
and bat cells (Hölzer et al., unpublished data).

Discussion
ViennaNGS is a comprehensive software library for rapid devel-
opment of custom NGS analysis pipelines. An aspect that is becom-
ing increasingly relevant in scientific computation is parallelization.
While we have focused on code convenience, feature richness and
easy extensibility, custom ViennaNGS-based pipelines can poten-
tially be implemented in a parallel manner by the end user, e.g.
through the Perl threads functionality. An example would be to
process and filter a set of BAM files in parallel, provided sufficient
IO resources are available.

ViennaNGS is actively developed and its code base is constantly
maintained and expanded. We will provide a generic, Moose based
annotation converter that builds on and extends the feature annota-
tion classes in the future. In addition, we will incorporate func-
tionality for manipulation and storage of sequence variants, such
as SNPs, editing and modification events. ViennaNGS will also
be used for automated UCSC genome browser integration in an
upcoming version of TSSAR19, a recently published approach for
characterization of transcription start sites from dRNA-seq data.
Moreover, we will provide Bio::HubFactory, a ViennaNGS-
based Web Service for automatic generation of UCSC genome
browser Assembly Hubs for all RefSeq bacteria.

ViennaNGS is an open platform for building specialized NGS
pipelines, which fills a niche by providing functionality that is, to
our knowledge, not available elsewhere. In this line, we would like
to encourage the scientific community to contribute novel features
and patches via Github.

Data availability
Input data for the ViennaNGS tutorial is available from http://rna.
tbi.univie.ac.at/ViennaNGS.

Software availability
The ViennaNGS distribution is available through the Comprehen-
sive Perl Architecture Network (CPAN) and at GitHub.

1.	 http://search.cpan.org/dist/Bio-ViennaNGS

2.	 https://github.com/mtw/Bio-ViennaNGS

3.	 Software license: The Perl 5 License

Third party dependencies
The ViennaNGS toolbox depends on a set of third-party tools and
libraries which are required for specific filtering and file format con-
version tasks as well as for building internally used Perl modules:

•	 BEDtools >= 2.1710

•	 bedGraphToBigWig, fetchChromSizes and faToTwoBit
from the UCSC Genome Browser applications9

•	 the R Statistics software20

•	 samtools <= v0.1.1913 for building Bio::DB::Sam. Please
note that more recent HTSlib-based versions of samtools
will not work with Bio::DB::Sam

Author contributions
MTW, JF, FE, FA designed and implemented the software. MTW
and FA wrote the manuscript. All authors approved the final
manuscript.

Competing interests
No competing interests were disclosed.

Grant information
This work was funded by the Austrian Science Fund (FWF projects
F43 to MTW, FA and FE) and the Research Platform “Decoding
mRNA decay in inflammation” by the University of Vienna to JF.

References

1.	 Förstner KU, Vogel J, Sharma CM: READemption-a tool for the computational
analysis of deep-sequencing-based transcriptome data. Bioinformatics. 2014;
30(23): 3421–3.
PubMed Abstract | Publisher Full Text

2.	 Breese MR, Liu Y: NGSUtils: a software suite for analyzing and manipulating
next-generation sequencing datasets. Bioinformatics. 2013; 29(4): 494–6.
PubMed Abstract | Publisher Full Text | Free Full Text

3.	 Heinz S, Benner C, Spann N, et al.: Simple combinations of lineage-determining
transcription factors prime cis-regulatory elements required for macrophage
and B cell identities. Mol Cell. 2010; 38(4): 576–89.
PubMed Abstract | Publisher Full Text | Free Full Text

4.	 Goecks J, Nekrutenko A, Taylor J, et al.: Galaxy: a comprehensive approach for

supporting accessible, reproducible, and transparent computational research
in the life sciences. Genome Biol. 2010; 11(8): R86.
PubMed Abstract | Publisher Full Text | Free Full Text

5.	 Anders S, Pyl PT, Huber W: HTSeq--a Python framework to work with high-
throughput sequencing data. Bioinformatics. 2015; 31(2): 166–9.
PubMed Abstract | Publisher Full Text | Free Full Text

6.	 Stajich JE, Block D, Boulez K, et al.: The Bioperl toolkit: Perl modules for the life
sciences. Genome Res. 2002; 12(10): 1611–8.
PubMed Abstract | Publisher Full Text | Free Full Text

7.	 Stodden V, Leisch F, Peng RD: Implementing Reproducible Research. CRC
Press, 2014.
Reference Source

Page 7 of 16

F1000Research 2015, 4:50 Last updated: 21 JUL 2015

http://www.ncbi.nlm.nih.gov/refseq
http://rna.tbi.univie.ac.at/ViennaNGS
http://rna.tbi.univie.ac.at/ViennaNGS
http://search.cpan.org/dist/Bio-ViennaNGS
https://github.com/mtw/Bio-ViennaNGS
https://github.com/arq5x/bedtools2
http://hgdownload.cse.ucsc.edu/admin/exe/
http://hgdownload.cse.ucsc.edu/admin/exe/
http://www.r-project.org/
http://search.cpan.org/ lds/Bio-SamTools/lib/Bio/DB/Sam.pm
http://www.ncbi.nlm.nih.gov/pubmed/25123900
http://dx.doi.org/10.1093/bioinformatics/btu533
http://www.ncbi.nlm.nih.gov/pubmed/23314324
http://dx.doi.org/10.1093/bioinformatics/bts731
http://www.ncbi.nlm.nih.gov/pmc/articles/3570212
http://www.ncbi.nlm.nih.gov/pubmed/20513432
http://dx.doi.org/10.1016/j.molcel.2010.05.004
http://www.ncbi.nlm.nih.gov/pmc/articles/2898526
http://www.ncbi.nlm.nih.gov/pubmed/20738864
http://dx.doi.org/10.1186/gb-2010-11-8-r86
http://www.ncbi.nlm.nih.gov/pmc/articles/2945788
http://www.ncbi.nlm.nih.gov/pubmed/25260700
http://dx.doi.org/10.1093/bioinformatics/btu638
http://www.ncbi.nlm.nih.gov/pmc/articles/4287950
http://www.ncbi.nlm.nih.gov/pubmed/12368254
http://dx.doi.org/10.1101/gr.361602
http://www.ncbi.nlm.nih.gov/pmc/articles/187536
http://www.crcpress.com/product/isbn/9781466561595

8.	 Li H, Handsaker B, Wysoker A, et al.: The Sequence Alignment/Map format and
SAMtools. Bioinformatics. 2009; 25(16): 2078–9.
PubMed Abstract | Publisher Full Text | Free Full Text

9.	 Kent WJ, Zweig AS, Barber G, et al.: BigWig and BigBed: enabling browsing of
large distributed datasets. Bioinformatics. 2010; 26(17): 2204–7.
PubMed Abstract | Publisher Full Text | Free Full Text

10.	 Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics. 2010; 26(6): 841–2.
PubMed Abstract | Publisher Full Text | Free Full Text

11.	 Raney BJ, Dreszer TR, Barber GP, et al.: Track data hubs enable visualization
of user-defined genome-wide annotations on the UCSC Genome Browser.
Bioinformatics. 2014; 30(7): 1003–1005.
PubMed Abstract | Publisher Full Text | Free Full Text

12.	 Pachter L: Models for transcript quantification from RNA-Seq. arXiv preprint
arXiv: 1104.3889. 2011.
Reference Source

13.	 Li B, Ruotti V, Stewart RM, et al.: RNA-Seq gene expression estimation with read
mapping uncertainty. Bioinformatics. 2010; 26(4): 493–500.
PubMed Abstract | Publisher Full Text | Free Full Text

14.	 Wagner GP, Kin K, Lynch VJ: Measurement of mRNA abundance using RNA-
seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012;

131(4): 281–285.
PubMed Abstract | Publisher Full Text

15.	 Hoffmann S, Otto C, Kurtz S, et al.: Fast mapping of short sequences with
mismatches, insertions and deletions using index structures. PLoS Comput
Biol. 2009; 5(9): e1000502.
PubMed Abstract | Publisher Full Text | Free Full Text

16.	 Hoffmann S, Otto C, Doose G, et al.: A multi-split mapping algorithm for circular
RNA splicing, trans-splicing, and fusion detection. Genome Biol. 2014; 15(2): R34.
PubMed Abstract | Publisher Full Text | Free Full Text

17.	 Antic S, Wolfinger MT, Skucha A, et al.: General and MicroRNA-Mediated mRNA
Degradation Occurs on Ribosome Complexes in Drosophila Cells. Mol Cell
Biol. 2015; 35(13): 2309–20.
PubMed Abstract | Publisher Full Text

18.	 Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with
RNA-Seq. Bioinformatics. 2009; 25(9): 1105–1111.
PubMed Abstract | Publisher Full Text | Free Full Text

19.	 Amman F, Wolfinger MT, Lorenz R, et al.: TSSAR: TSS annotation regime for
dRNA-seq data. BMC Bioinformatics. 2014; 15: 89.
PubMed Abstract | Publisher Full Text | Free Full Text

20.	 R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2014.
Reference Source

Page 8 of 16

F1000Research 2015, 4:50 Last updated: 21 JUL 2015

http://www.ncbi.nlm.nih.gov/pubmed/19505943
http://dx.doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pmc/articles/2723002
http://www.ncbi.nlm.nih.gov/pubmed/20639541
http://dx.doi.org/10.1093/bioinformatics/btq351
http://www.ncbi.nlm.nih.gov/pmc/articles/2922891
http://www.ncbi.nlm.nih.gov/pubmed/20110278
http://dx.doi.org/10.1093/bioinformatics/btq033
http://www.ncbi.nlm.nih.gov/pmc/articles/2832824
http://www.ncbi.nlm.nih.gov/pubmed/24227676
http://dx.doi.org/10.1093/bioinformatics/btt637
http://www.ncbi.nlm.nih.gov/pmc/articles/3967101
http://arxiv.org/abs/1104.3889
http://www.ncbi.nlm.nih.gov/pubmed/20022975
http://dx.doi.org/10.1093/bioinformatics/btp692
http://www.ncbi.nlm.nih.gov/pmc/articles/2820677
http://www.ncbi.nlm.nih.gov/pubmed/22872506
http://dx.doi.org/10.1007/s12064-012-0162-3
http://www.ncbi.nlm.nih.gov/pubmed/19750212
http://dx.doi.org/10.1371/journal.pcbi.1000502
http://www.ncbi.nlm.nih.gov/pmc/articles/2730575
http://www.ncbi.nlm.nih.gov/pubmed/24512684
http://dx.doi.org/10.1186/gb-2014-15-2-r34
http://www.ncbi.nlm.nih.gov/pmc/articles/4056463
http://www.ncbi.nlm.nih.gov/pubmed/25918245
http://dx.doi.org/10.1128/MCB.01346-14
http://www.ncbi.nlm.nih.gov/pubmed/19289445
http://dx.doi.org/10.1093/bioinformatics/btp120
http://www.ncbi.nlm.nih.gov/pmc/articles/2672628
http://www.ncbi.nlm.nih.gov/pubmed/24674136
http://dx.doi.org/10.1186/1471-2105-15-89
http://www.ncbi.nlm.nih.gov/pmc/articles/4098767
http://web.mit.edu/r_v3.0.1/fullrefman.pdf

F1000Research

Open Peer Review

 Current Referee Status:

Version 2

 21 July 2015Referee Report

doi:10.5256/f1000research.7298.r9558

 Björn Voß
Faculty of Biology, University of Freiburg, Freiburg, Germany

The authors have significantly improved their manuscript and satisfactorily replied to my comments, such
that I feel happy to approve this version of the manuscript.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Version 1

 24 April 2015Referee Report

doi:10.5256/f1000research.6600.r8396

 Björn Voß
Faculty of Biology, University of Freiburg, Freiburg, Germany

In their manuscript about ViennaNGS the authors describe a set of perl modules and scripts that is useful
to build pipelines for NGS data analysis. A key motivation for this is to promote reproducible science,
especially with respect to medium-level users, who often create "in-house scripts" for data analysis, which
are rarely publicly available. This target community distinguishes ViennaNGS from related approaches,
such as Galaxy. The contribution is, thus, relevant and has the potential to serve as a basis for future
developments in NGS analysis pipelines. I tested the tutorials and some of the utility scripts and they
worked fine. Nevertheless, I think the authors need to clarify some issues and can improve the
presentation of their work.

Major Comments:

The authors should point out clearly, what distinguishes ViennaNGS from other suites. In the end,
they need to convince people to use ViennaNGS. For that it would be helpful to clearly state what
is hard or even impossible to implement in one of the other systems (galaxy, HTSeq, ...) at best
with real world examples.

As stated in the title the aim of ViennaNGS is to ease the process of building NGS analysis

Page 9 of 16

F1000Research 2015, 4:50 Last updated: 21 JUL 2015

http://dx.doi.org/10.5256/f1000research.7298.r9558
http://dx.doi.org/10.5256/f1000research.6600.r8396

F1000Research

As stated in the title the aim of ViennaNGS is to ease the process of building NGS analysis
pipelines. Unfortunately, exactly this aspect is more or less not mentioned in the main text. It would
be interesting to know, especially for the data analysts with scripting experience, how such a
pipeline looks like and why it is easier to build using ViennaNGS.

I do not quite understand the explicit discussion of TPM and RPKM. The differences are
extensively discussed in , which the authors can refer to.Wagner (2012)et al.

Similarly, the description of the accompanying utilities in Table 1 is of minor interest. I would
suggest to mention them when the corresponding functionality is described in the main text, e.g.,
assembly_hub_constructor.pl in the paragraph on Visualization. Furthermore, the authors can
explain one tool in detail to show how ViennaNGS pipelines are implemented.

BioPerl already provides modules to handle Annotation Features (Bio::SeqFeature), which at first
glance seem to provide the same functionality as the ViennaNGS feature annotation classes. Why
is there a need for an own class?

Minor Comments:
An aspect that is becoming more and more important is parallelization. The authors should
describe the possibilities of ViennaNGS to be used in cluster or massively parallel environments.

The authors should make clear that for some/many tasks they use external tools, such as
bedtools2, samtools and tools offered by the UCSC and that the user has to install them on its own.
Of course, this is the same as for galaxy and others.

I was wondering if ViennaNGS or its pipelines may be integrated into Galaxy. In this way the
systems would complement and benefit from each other.

At the end of the discussion the authors could provide actual functionalities that they are planning
to integrate in the near future. This is interesting for potential users who are missing certain
functionalities in the current release. On example is quality control of the raw sequencing data.

P.5, Software availability: "at and" --> "and at"

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Reader Comment 06 Jul 2015
, University of Vienna, AustriaMichael T. Wolfinger

We would like to thank you for taking the time to review this manuscript, as well as for your helpful
comments. We have addressed every issue raised here in a point-to-point manner and modified
our manuscript accordingly at different places. We hope that the changes are satisfactory.

The authors should point out clearly, what distinguishes ViennaNGS from other suites. In
the end, they need to convince people to use ViennaNGS. For that it would be helpful to
clearly state what is hard or even impossible to implement in one of the other systems
(galaxy, HTSeq,...) at best with real world examples.

Page 10 of 16

F1000Research 2015, 4:50 Last updated: 21 JUL 2015

http://www.ncbi.nlm.nih.gov/pubmed/22872506

F1000Research

(galaxy, HTSeq,...) at best with real world examples.

We appreciate this comment and have added a paragraph in the Introduction, highlighting both the
Moose-based object oriented design, and the Perl 6 compliance, which can be regarded as unique
selling points of the ViennaNGS suite. ViennaNGS has been developed to provide a toolbox that
helps users build their analysis pipelines in Perl, thus targeting researchers who are more literate in
Perl than Python. However, ViennaNGS is an open platform and it should therefore be
straightforward to implement ViennaNGS-based pipelines within e.g. Galaxy for experienced
users.

As stated in the title the aim of ViennaNGS is to ease the process of building NGS analysis
pipelines. Unfortunately, exactly this aspect is more or less not mentioned in the main
text. It would be interesting to know, especially for the data analysts with scripting
experience, how such a pipeline looks like and why it is easier to build using ViennaNGS.

We have added a new section 'Applications' where the process of building custom pipelines is
exemplified in terms of the ViennaNGS Tutorials and Utilities. The ViennaNGS Tutorials explain in
detail how custom pipelines can be built for a set of real-world NGS applications.

I do not quite understand the explicit discussion of TPM and RPKM. The differences are
extensively discussed in Wagner . (2012), which the authors can refer to.et al

The extensive discussion of TPM and RPKM, including all formulas, have been removed from the
manuscript.

Similarly, the description of the accompanying utilities in Table 1 is of minor interest. I
would suggest to mention them when the corresponding functionality is described in the
main text, e.g., assembly_hub_constructor.pl in the paragraph on Visualization.
Furthermore, the authors can explain one tool in detail to show how ViennaNGS pipelines
are implemented.

We respectfully disagree and think that the ViennaNGS utilities should be mentioned in one place,
given that they can be regarded, apart from the ViennaNGS Tutorials, as yet another set of
example implementations of ViennaNGS library functions. Moreover, we have shifted the
paragraph mentioning the Utilities into the Applications section.

BioPerl already provides modules to handle Annotation Features (Bio::SeqFeature), which
at first glance seem to provide the same functionality as the ViennaNGS feature
annotation classes. Why is there a need for an own class?

BioPerl and it's associated modules are a fantastic toolbox for everyday bioinformatics work and
we use them whenever applicable (e.g. via Bio::DB::Sam). In general the Bio::Seq and especially
Bio::SeqFeature classes allow a multitude of operations on common biological features, their
annotations and file formats. ViennaNGS was designed with strong focus on NGS analysis and
easy portability to Perl 6. Given that the ViennaNGS feature annotation classes play a pivotal role
in current and future development of the toolbox, we decided to implement Moose classes
without introducing too many dependencies on existing BioPerl modules. We went for a design that
specifically fits the needs of NGS analysis and stays as minimal as possible. In this sense, we do
not see ViennaNGS in competition to BioPerl but as a boutique alternative for NGS data analysts.

Page 11 of 16

F1000Research 2015, 4:50 Last updated: 21 JUL 2015

F1000Research

An aspect that is becoming more and more important is parallelization. The authors
should describe the possibilities of ViennaNGS to be used in cluster or massively parallel
environments.

We appreciate this comment and have added a statement on parallelization of ViennaNGS-based
pipelines into the Discussion. Our focus in the initial development phase of ViennaNGS has not
been on parallelization, hence the code base has not been specifically designed for parallel
processing in a cluster environment. It should, however, be straightforward to implement certain
tasks in multithreaded pipelines.

The authors should make clear that for some/many tasks they use external tools, such as
bedtools2, samtools and tools offered by the UCSC and that the user has to install them
on its own. Of course, this is the same as for galaxy and others.

A section listing all third party dependencies has been added to the main text.

I was wondering if ViennaNGS or its pipelines may be integrated into Galaxy. In this way
the systems would complement and benefit from each other.

As mentioned earlier, since ViennaNGS is implemented purely in Perl, it should be straightforward
for experienced users to integrate its functionalities into Galaxy, e.g., via the the Galaxy Tool
Factory.

At the end of the discussion the authors could provide actual functionalities that they are
planning to integrate in the near future. This is interesting for potential users who are
missing certain functionalities in the current release. On example is quality control of the
raw sequencing data.

The Discussion has been updated accordingly.

P.5, Software availability: "at and" --> "and at"

Done.

 No competing interests were disclosed.Competing Interests:

 23 April 2015Referee Report

doi:10.5256/f1000research.6600.r8057

 Brad Chapman
Department of Biostatistics, Harvard Public School of Health, Boston, MA, USA

The authors describe ViennaNGS, a set of Perl modules and scripts to provide RNA-seq analysis and
visualization via UCSC integration. The code is nicely written, open source and easy to install via CPAN

with cpanminus. Additionally, the documentation is excellent and contains both high level material in the

Page 12 of 16

F1000Research 2015, 4:50 Last updated: 21 JUL 2015

http://dx.doi.org/10.5256/f1000research.6600.r8057

F1000Research

with cpanminus. Additionally, the documentation is excellent and contains both high level material in the
form of blog posts as well as detailed source code descriptions. In reading the paper I found a few areas
that would help improve reader's understanding of the toolbox:

Please include additional information about what is unique about ViennaNGS in the introduction.
Currently it reads generally and is more about pointing about flaws in other software without saying
what ViennaNGS provides. The motivation provides much of this text but it seems out of order
relative to the introductory material.

Please provide benchmarks on your BAM manipulation tools relative other common tools. I don't
think this needs to be extensive, but providing a summary of how they perform on a 100Gb 30x
whole human genome sequence would be helpful. For filtering comparisons, I suggest comparing
with samtools or sambamba (https://github.com/lomereiter/sambamba). For quality control,
comparisons to QualiMap (http://qualimap.bioinfo.cipf.es/) or bamtools
(https://github.com/pezmaster31/bamtools) would be helpful.

Similarly, it would be great to have benchamrking on annotation and BED manipulation tools in
ViennaNGS. How does the functionality and timing compare with bedtools? You require and use
bedtools for visualization, and it would be useful to clarify benefits and tradeoffs to using
ViennaNGS versus interfacing directly with bedtools.

How do you handle testing and validation of ViennaNGS tools and pipelines? I saw new tests for
UCSC integration coming in during review, which is great. It would be nice to understand the
process by which you ensure new development improves (or at least doesn't degrade) the
biological results.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Reader Comment 06 Jul 2015
, University of Vienna, AustriaMichael T. Wolfinger

Thank you very much for taking the time to review our manuscript. We appreciate your comments
and have addressed every issue raised here in a point-to-point manner and modified our
manuscript accordingly at different places. We hope that the changes are satisfactory.

Please include additional information about what is unique about ViennaNGS in the
introduction. Currently it reads generally and is more about pointing about flaws in other
software without saying what ViennaNGS provides. The motivation provides much of this
text but it seems out of order relative to the introductory material.

Thank you very much for this comment, which is highly appreciated. We have re-arranged the
Introduction and Methods sections and provide additional information on ViennaNGS' unique
selling points, specifically its object oriented design based on the Moose framework and
consequently Perl 6 compliance.

Please provide benchmarks on your BAM manipulation tools relative other common tools.
I don't think this needs to be extensive, but providing a summary of how they perform on a

Page 13 of 16

F1000Research 2015, 4:50 Last updated: 21 JUL 2015

F1000Research

Please provide benchmarks on your BAM manipulation tools relative other common tools.
I don't think this needs to be extensive, but providing a summary of how they perform on a
100Gb 30x whole human genome sequence would be helpful. For filtering comparisons, I
suggest comparing with samtools or sambamba
(https://github.com/lomereiter/sambamba). For quality control, comparisons to QualiMap
(http://qualimap.bioinfo.cipf.es/) or bamtools (https://github.com/pezmaster31/bamtools)
would be helpful.

ViennaNGS has been designed as a toolbox for building NGS pipelines and does not do any
SAM/BAM manipulation itself. For the latter we rely on Bio::DB::Sam, which uses the samtools
library internally. Comparison against the mentioned tools is difficult since, to our knowledge, Perl
bindings for the mentioned tools are not available.

We have benchmarked the ViennaNGS tutorials and provide statistics on time and memory
consumption in Table 1. For consistency we have applied the benchmarks to files smaller than the
suggested 100Gb 30x coverage, since they are part of our tutorial pipeline and can readily be
downloaded from our Web server at http://rna.tbi.univie.ac.at/ViennaNGS.

Similarly, it would be great to have benchmarking on annotation and BED manipulation
tools in ViennaNGS. How does the functionality and timing compare with bedtools? You
require and use bedtools for visualization, and it would be useful to clarify benefits and
tradeoffs to using ViennaNGS versus interfacing directly with bedtools.

Here the same arguments concerning benchmarking given above apply. Wherever possible we
use bedtools for BED manipulation rather than interfacing directly with BED files. The major benefit
of using ViennaNGS versus interfacing directly with bedtools is to have data stored consistently in
Moose objects which can be referenced throughout the toolbox. As for timing, we do not expect
any impact since all bedtools utilities are called via Perl system calls, thus conserving the original
bedtools functionality.

How do you handle testing and validation of ViennaNGS tools and pipelines? I saw new
tests for UCSC integration coming in during review, which is great. It would be nice to
understand the process by which you ensure new development improves (or at least
doesn't degrade) the biological results.

We have added a paragraph outlining the ViennaNGS testing strategy. While we have not yet
implemented testing on a global scale, the ViennaNGS::SpliceJunc and ViennaNGS::UCSC
modules are currently tested automatically and tests for feature annotation classes will be added in
the near future.

 No competing interests were disclosed.Competing Interests:

 17 April 2015Referee Report

doi:10.5256/f1000research.6600.r8365

 Angelika Merkel
Centro Nacional de Análisis Genómico, Parc Científic de Barcelona, Barcelona, Spain

The authors present a useful and relevant toolbox for the analysis of NGS data. Its modular design allows

Page 14 of 16

F1000Research 2015, 4:50 Last updated: 21 JUL 2015

http://dx.doi.org/10.5256/f1000research.6600.r8365

F1000Research

The authors present a useful and relevant toolbox for the analysis of NGS data. Its modular design allows
for flexibility in the analysis, and the utilization of track hubs for easy exchange of data as well as
visualization with popular tools. A nice implementation is the ability to adapt genome annotations of
various formats.

Still, I feel the description of the software is rather too general and could be improved.

Major Comments:

The article lacks any benchmarking or presentation of an example analysis, making it difficult to put the
software's performance in perspective with any of the other numerous tools already available. Important
for NGS data analysis are specifications for the usage of computational resources (RAM, number of
CPUs, processing time, space requirements) and how those scale up with the size of the data set
(=number and size of data sets) or type of NGS data (genomic, RNAseq, ChIPseq, Bisulfite-Seq) - all of
which are not mentioned. Similarly, the authors do not make any statement on the possibility of
parallelization or adaption to cluster infrastructures.

Minor comments:

Although, truly RPKM has been shown to be inappropriate for measuring the relative molar concentration
of a RNA species due to normalization by the total number of reads, it is still widely used. Computing
RPMK values as well (optionally) as TPM would allow for comparison with other pipelines.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Reader Comment 06 Jul 2015
, University of Vienna, AustriaMichael T. Wolfinger

Thank you very much for taking the time to review our manuscript and for your helpful comments.
We have addressed raised issues here in a point-to-point manner, adjusted the text accordingly,
and added the requested functionality to the library. We hope that these changes are satisfactory.

The article lacks any benchmarking or presentation of an example analysis, making it
difficult to put the software's performance in perspective with any of the other numerous
tools already available. Important for NGS data analysis are specifications for the usage
of computational resources (RAM, number of CPUs, processing time, space requirements)
and how those scale up with the size of the data set (=number and size of data sets) or
type of NGS data (genomic, RNAseq, ChIPseq, Bisulfite-Seq) - all of which are not
mentioned. Similarly, the authors do not make any statement on the possibility of
parallelization or adaption to cluster infrastructures.

We appreciate this comment and have addressed the concerns at different places throughout the
manuscript. These include:

Benchmarking and presentation of examples: We have added a section 'Applications'
where the process of building custom pipelines is exemplified in terms of the ViennaNGS
Tutorials and Utilities. We provide coherent benchmarking data of computer resources

Page 15 of 16

F1000Research 2015, 4:50 Last updated: 21 JUL 2015

F1000Research

where the process of building custom pipelines is exemplified in terms of the ViennaNGS
Tutorials and Utilities. We provide coherent benchmarking data of computer resources
required to run the Tutorial pipelines in Table 1. The ViennaNGS Tutorial pipelines have
been specifically designed as example implementations of custom ViennaNGS-based
analysis workflows. Data-intensive tasks, e.g. BED or BAM filtering, are mainly performed
by system calls to third-party tools (bedtools and samtools, respectively), that work on BED
or BAM files, regardless whether these originate from RNA-seq or other NGS assays.

We appreciate the comment on the possibility of parallelization, which has also been raised
by another reviewer, and have added a statement regarding parallelization of
ViennaNGS-based pipelines into the Discussion. While the code base not been specifically
designed for execution in a parallel environment, specific tasks such as spliting of BAM files
can be parallelized trivially within custom ViennaNGS pipelines, provided sufficient IO
resources are available.

For consistency reasons we stuck to the supplementary shipped data, as included in the
Tutorials, for benchmarking. Where applicable, we modified the Tutorials and tested their
performance with increasing number of input file (e.g, Tutorial 0) or with increasing size of
input file (e.g., Tutorial 2). Both tests showed, as expected, a linear relationship between
input, memory and time consumption, respectively.

Although, truly RPKM has been shown to be inappropriate for measuring the relative
molar concentration of a RNA species due to normalization by the total number of reads, it
is still widely used. Computing RPMK values as well (optionally) as TPM would allow for
comparison with other pipelines.

Thank you very much for this comment. We have added the possibility to compute RPKM
alongside TPM within the Bio::ViennaNGS::Expression module and updated the
normalize_multicov.pl utility accordingly. Modified versions of the mentioned software are available
in Bio::ViennaNGS v0.15.

 No competing interests were disclosed.Competing Interests:

Page 16 of 16

F1000Research 2015, 4:50 Last updated: 21 JUL 2015

