Evolution of Flavivirus regulatory RNA elements
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Arthropod-borne flaviviruses (FVs), including pathogens such as Den- Structured non-coding RNAs are evolutionary conserved. Their fun-
gue (DENV), Zika (ZIKV), Yellow fever (YFV), Japanese encephalitis ction depends more on their secondary or tertiary structure than on
virus (JEV) are a growing global health treat. FV are small (+)ssRNA their primary sequence. Finding homologs of a set of structurally rela-
viruses of 10-12kb length with highly structured untranslated re- ted RNAs can be achieved with covariance models (CMs) [2], i.e.
gions (UTRs). The latter are associated with regulation of the viral life statistical models of RNA structural alignments based on profile sto-
cycle, inducing genome circularization, replication, packaging, and chastic context free grammars (SCFG). Contrary to Hidden Markov
modulating pathogenicity [1]. We present a computational approach models, paired positions in CMs depend on each other, thus allowing
for automatic annotation of conserved RNA structural ele- the profile to model covariation in base pairs.

ments in FV UTRs based on covariance models (CMs).
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Covariation is observed both at inter- and intra-species levels in FV.
We built highly specific CMs for FV 5'UTR (SLA, SLB) and 3'UTR (SL,

Fig 1. Schematic representation of FV genome organization (top right). Conserved

xrRNA elements SL and DB (left) are located in single or tandem within 3'UTRs and DB, 3 SL)_ elements based on all FV genomes listed in NCBI. OL!I‘
efficiently stall host exonuclease Xrnl (red pac-man). A pseudoknot interaction has data set includes CMs for virus groups, species and serotypes that fit
been reported for some SL and DB elements (orange, left). nicely into the concept of Rfam clans [4]. /
Upon FV infection, accumulation of stable long non-coding viral RNAs, / - - \
termed subgenomic flaviviral RNAs (sfRNAs) is observed. sfRNAs Automated genotyplng Of VIFUSEeS
modulate cellular function and are linked to pathogenicity. They are o | o
produced by stalling the 5'-3' host exoribonuclease Xrnl at stable We have developed a software pipeline for automated identification
structural elements in the 3'UTR, termed Xrnl-resistant RNA (xrRNA). and characterization of evolutionary converved RNA elements in viral
Mosquito-borne FV (MBFV) typically have more than one xrRNA ele- genomes. Starting from RNA structural alignments, we create initial
ment, each having different capacity of stalling Xrnl, thus enabling CMs and refine them iteratively. False positives are eliminated by a
production of sfRNAs of different lengths. Stem-loop (SL) and novel approach, RNAaliSplit [5], that explicitly considers structural
Dumbbell (DB) elements have been attributed xrRNA functionality in conservation in multiple sequence alignments for classification of
Q/IBFV' / Qm-matchlng sequences. /
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Fig 4. Phylogenetic network of 95 different FV species. Neighbor
net computed from ClustalO multiple sequence alignment of Fig 5. Regulatory elements in MBFV. Tick-borne FV have a 5'UTR SLA, but lack SL and DB elements. Consensus struc-
@notated protein coding regions. tures computed with RNAalifold [3]. Base pairs with significant covariation according to R-scape [6] are shown in green.j
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