universität freiburg

Summary

RNA folding kinetics describe the probabilistic dynamics of the RNA folding process.

RNA folding times allow to analyse the **folding** efficiency with applications in synthetic biology and candidate selection for drug discovery.

Problem: Current RNA kinetics simulators are costly and scale exponentially with the RNA length.

We present **KinPFN**, a novel approach for RNA folding kinetics based on prior-data fitted networks (PFNs) [1, 2].

Trained on a synthetic prior representing RNA folding times, KinPFN achieves comparable while reducing simulator costs by results **≥95%**.

Synthetic RNA Folding Time Prior

Challenges:

- RNA kinetics data is rare due to exponential costs of kinetic simulators.
- We have no access to the combination of RNA folding times and specific features like sequence or energy.

Approach:

- We train on synthetic datasets drawn from Gaussians multi-modal parameterized representing RNA folding time distributions.
- We leverage in-context learning at test time to accelerate kinetics simulators.

$(\cdot \cdot \cdot \cdot \cdot \cdot) i = 1$
$\{(0_i, t_i)\}_{i=1}^N \cup \{(0_i, t_i)\}_{i=N+1}^M$
$D_{\text{train}}^{(1)} \cup \{(0_{\text{test}}^{(1)}, t_{\text{test}}^{(1)})\}$
:
$D^{(B)} = \{(0_i, t_i)\}_{i=1}^M =$
$\{(0_i, t_i)\}_{i=1}^N \cup \{(0_i, t_i)\}_{i=N+1}^M$
$D_{\text{train}}^{(B)} \cup \{(0_{\text{test}}^{(B)}, t_{\text{test}}^{(B)})\}$

and test input for inference up to a ce $\left(\{(0_i, t_i)\}_{i=1}^N, \{(0_i)\}_{i=1}^M\right) = (D_{\text{train}}, t_i)$

Case Study: Kinetics of Natural RNAs

Setup:

We use 50 context RNA folding times from 1,000 simulations of [3].

Data:

Four natural RNAs: tRNA^{phe}, 5S rRNA (both S. cerevisiae), SAM Riboswitch (B. subtilis), micro RNA (*H. sapiens*).

Results:

95% runtime improvement (~2 days \rightarrow ~3 hours) with minimal accuracy loss.

KinPFN: Bayesian Approximation of RNA Folding Kinetics using Prior-Data Fitted Networks

Dominik Scheuer^{1,*}, Frederic Runge^{1,*}, Jörg K.H. Franke¹, Michael T. Wolfinger^{2,3}, Christoph Flamm², Frank Hutter^{1,4}

¹University of Freiburg, Germany ²University of Vienna, Austria ³RNA Forecast e.U., Vienna, Austria ⁴ELLIS Institute Tübingen, Germany ^{*}Equal contributions dom.scheuer@gmail.com runget@cs.uni-freiburg.de

	KinPEN with parameters A*		10	25
	Kini Fiv with parameters o	KinPFN	1.3739	1.243
		GMM_2	2.3122	1.36
		GMM_3	5.2469	1.583
		GMM_4	13.1325	1.992
(0_{test})		GMM_5	37.5845	2.770
	Bayesian inference via the trained	$DP-GMM_2$	1.6285	1.352
	KinPFN, with the actual training	$DP-GMM_3$	1.6268	1.354
	data and test points as input:	$DP-GMM_4$	1.6294	1.35
		$DP-GMM_5$	1.6256	1.35
	$q_{\theta^*}(t_{\text{test}} 0_{\text{test}}, D_{\text{train}}) \approx p(t_{\text{test}} 0_{\text{test}}, D_{\text{train}})$	KDE	1.4370	1.25

KinPFN requires only 1% of the compute per RNA!

[2] Adriaensen, S., Rakotoarison, H., Müller, S., & Hutter, F. (2023). Efficient bayesian learning curve extrapolation using prior-data fitted networks. Advances in Neural Information Processing Systems, 36, 19858-19886. [3] Flamm, C., Fontana, W., Hofacker, I. L., & Schuster, P. (2000). RNA folding at elementary step resolution. Rna, 6(3), 325-338. [4] Dykeman, E. C. (2015). An implementation of the Gillespie algorithm for RNA kinetics with logarithmic time update. Nucleic acids research, 43(12), 5708-5715. [5] Bagnall, J., Rowe, W., Alachkar, N., Roberts, J., England, H., Clark, C., ... & Paszek, P. (2020). Gene-specific linear trends constrain transcriptional variability of the toll-like receptor signaling. Cell Systems, 11(3), 300-314.

Mattom Corg

ellis Institute

ICLR