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Summary

RNA folding kinetics describe the probabilistic 
dynamics of the RNA folding process.

RNA folding times allow to analyse the folding 
efficiency with applications in synthetic biology 
and candidate selection for drug discovery.

Problem: Current RNA kinetics simulators are 
costly and scale exponentially with the RNA 
length.

We present KinPFN, a novel approach for RNA 
folding kinetics based on prior-data fitted 
networks (PFNs) [1, 2].

Trained on a synthetic prior representing RNA 
folding times, KinPFN achieves comparable 
results while reducing simulator costs by 
≥95%.

Background: RNA Folding Kinetics

Case Study: Kinetics of Natural RNAs Case Study: Folding Efficiency Analysis

Challenges: 
● RNA kinetics data is rare due to exponential 

costs of kinetic simulators.
● We have no access to the combination of 

RNA folding times and specific features like 
sequence or energy.

Approach:
● We train on synthetic datasets drawn from 

parameterized multi-modal Gaussians 
representing RNA folding time distributions.

● We leverage in-context learning at test time 
to accelerate kinetics simulators. 

KinPFN is exclusively trained on synthetic folding times without knowledge about the underlying RNA features.

Setup: Evaluate KinPFN generalization performance by 
using data from different biological context.

Data: smFISH counts from [5] for the expression of 
Interleukin-1 (IL-1α, IL-1β) and tumor necrosis factor alpha 
(TNF-α) mRNA in two immune cell lines, established RAW 
264.7 macrophage cells and bone-marrow-derived 
macrophages (BMDM)) stimulated with Lipid A.

Results: KinPFN achieves accurate approximations of the 
gene expression using only 8% of the count data.

Setup: Compare the folding efficiency of three 43nt RNAs (ϕ0, ϕ1, ϕ2) 
with the same minimum free energy (MFE) structure.

Data: 10 context RNA folding times from 1,000 simulations of [3] for 
each RNA.

Results: 100× speed-up per RNA at comparable performance.

Setup: 
We use 50 context RNA folding times from 1,000 simulations of [3].

Data:
Four natural RNAs: tRNAphe, 5S rRNA (both S. cerevisiae), SAM Riboswitch (B. 
subtilis), micro RNA (H. sapiens).

Results:
95% runtime improvement (~2 days → ~3 hours) with minimal accuracy loss.

Setup: Use Simulator Data as Context.

Data: 635 randomly generated RNA 
sequences with 1000 Simulations from [3].

Results: Strong approximation performance 
of KinPFN across varying context sizes.

Our Approach: KinPFN

During the folding process, RNA traverses 
through a series of intermediate structural 
states, with each transition occurring at 
variable rates that collectively influence the 
time required to reach the functional form.

Problem: Existing RNA folding kinetics 
simulators are costly and scale 
exponentially with the RNA length, which  
makes them inapplicable to applications 
such as kinetic RNA design.

RNA Folding Times, the time required to 
fold into the structural form, allow to 
analyse the folding efficiency with 
applications in synthetic biology and drug 
discovery.

Benchmarking runtime using [3] on a single 
AMD Milan EPYC 7513 CPU with 2,6 GHz.

Setup: Use kinetics simulations 
from [4].

Results: KinPFN approximation 
is independent of the simulator.

Setup: Analyze performance across RNA 
sequence lengths.

Results: KinPFN performance is constant 
across sequence lengths.

Setup: Analyze performance with 
different start and stop structures.

Results: KinPFN is independent of 
the start and stop structure.

tRNAphe (76nt) 5S rRNA (121nt) SAM Riboswitch (92nt)  hsa-miR-7107-3p (27nt)

KinPFN requires only 5% of the compute! KinPFN requires only 1% of the compute per RNA!

KinPFN requires only 8% of the data!
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