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RNA folding kinetics describe the probabilistic dynamics of the Synthetic Datasets are
RNA folding process. ” drawn from multimodal

Gaussians representing
RNA folding times.

Training on a Synthetic Prior

RNA folding times allow to analyse the folding efficiency with
applications in synthetic biology and candidate selection for
drug discovery.
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Problem: Current RNA kinetics simulators are costly and scale | ® Context In approximates a
exponentially with the RNA length. | i given distribution from a
il o ,..|.H . few example “Times”.
We present KinPFN, a novel approach for RNA folding kinetics Riemann Distribution

based on prior-data fitted networks (PFNs).

KinPFN is trained on
~5M distributions by
minimizing the NLL.

Trained on a synthetic prior representing RNA folding times,
KinPFN achieves comparable results while reducing simulator
costs by 295%.

Approximation via In-Context Learning
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(~2 days — ~3 hours)
with minimal accuracy
loss.
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KinPFN requires only 1% of the compute per RNA!
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