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The HP-model
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Suggested by Dill, Chan and Lau in the late

1980ies. In this simplified model, a -

conformation is a self-avoiding walk (SAW) on or ¢
) RB Lo

oH

a given lattice in 2 or 3 dimensions. Each bond

is a straight line, bond angles have a few o
discrete values. The 20 letter alphabet of
amino acids (monomers) is reduced to a two FRRLLFLF

letter alphabet, namely H and P. H represents
hydrophobic monomers, P represents
hydrophilic or polar monomers.

Advantages:
m lattice-independent folding algorithms s .
m simple energy function \ o
m hydrophobicity can be reasonably modeled vV . b ’,/




Contact Potentials

Generally, the energy function for a sequence with n residues
S =s5182...5, with s5; € & ={ay,ap,...,ap}, the alphabet of b residues,

and an overall configuration x = (x1,x2,...,X,) on a lattice .Z can be
written as the sum of pair potentials
E(G,X)Z E ‘P[S,',Sj].
i<j-1
|X,'7XJ'| =1



Lattice proteins
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Lattice proteins - interaction scheme Il
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n=74
E=—-120
H P N X
H -4 0 0 0
P 0 0 -1 0
N 0 -1 0 0 .
X 0 0 0 0 toi



Folding landscape - energy landscape

The energy landscape of a biopolymer molecule is a complex surface of
the (free) energy versus the conformational degrees of freedom.

Number of lattice protein structures

cp~ Mn .nr—1
problem is NP-hard

In the RNA case
ch~1.86"-n"2

dynamic programming algorithms available

dim | Lattice Type u y
sqQ 2.63820 | 1.34275
2 TRI 4.15076 1.343
HEX 1.84777 1.345
sC 4.68391 1.161
3 BCC 6.53036 1.161
FCC 10.0364 1.162




Folding landscape - energy landscape

The energy landscape of a biopolymer molecule is a complex surface of
the (free) energy versus the conformational degrees of freedom.

Number of lattice protein structures

dim | Lattice Type u y
n. ,y—1 sQ 2.63820 | 1.34275
ch~u’-n

= 2 TRI 4.15076 1.343
problem is NP-hard

HEX 1.84777 1.345

In the RNA case SC 4.68391 1.161

~1.86"- 7% 3 BCC 6.53036 1.161

Cn ™~ 10071 FCC 10.0364 | 1.162

dynamic programming algorithms available

Formally, three things are needed to construct an energy landscape:
m A set X of configurations
m a symmetric neighborhood relation 91 : X x X

m an energy function f : X - R



The move set
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The move set
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m For each move there must be an inverse move
m Resulting structure must be in X
m Move set must be ergodic ot
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Energy barriers and barrier trees

Some topological definitions:
A structure is a

m local minimum if its energy is lower
than the energy of all neighbors

m local maximum if its energy is higher
than the energy of all neighbors

m saddle point if there are at least two
local minima thar can be reached by a
downbhill walk starting at this point

We further define

m a walk between two conformations x and y as a list of conformations
X =X1...Xm+1 =y such that V1 <7/ < m:N(x;,x;41)

1*

m the lower part of the energy landscape (written as X<") as all
conformations x such that E£(&,x) < n (with a predefined threshold 7).

@ C. Flamm, I. L. Hofacker, P. F. Stadler, and M. T. Wolfinger.

Barrier trees of degenerate landscapes. .
Z. Phys. Chem., 216:155-173, 2002. fé,,



Information from the barrier tree

Local minima

Saddle points

Barrier heights

Gradient basins

Partition functions and free energies of (gradient) basins

This information can be used to approximate the dynamics of biopolymers, i.e.
transition rates between different macrostates (basins in the barrier tree)
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The lower part of the energy landscape

Two conformations x and y are mutually accessible at the level n
(written as x <P g~ y) if there is a walk from x to y such that all
conformations z in the walk satisfy E(&,z) < 1. The saddle height

f(x,y) of x and y is defined by

f(x,y) =min{n [ x«L1 3y}

Given the set of all local minima erig below threshold 7, the lower
energy part X=" of the energy landscape can alternatively be written as

XN — {y | dx € XITSHZ . ?(X,}/) < 77}

Given a restricted set of low-energy conformations, Xinit, and a reasonable
value for 1, the lower part of the energy landscape can be calculated.

@ M. T. Wolfinger, S. Will, I. L. Hofacker, R. Backofen, and P. F. Stadler.
Exploring the lower part of discrete polymer model energy landscapes.

Europhys. Lett., 2006. fé’:



The Flooder approach
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PathFinder - illustration
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PathFinder - illustration
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Dynamics of biopolymers

The probability distribution P of structures as a function of time is ruled
by a set of forward equations, also known as the master equation

P — 3 [Pe(y) oy — Pe(x) k]

Given an initial population distribution, how does the system evolve in
time? (What is the population distribution after n time-steps?)

iIDt:UIDt — Pt:etUPO



Barrier tree kinetics

For a reduced description we need

m macro-states that form a partition of full configuration space

m transition rates between macro-states, e.g.

rga = Lo exp <7(E[’;a - Ga)/kT> or

_ e IfAE>0
fBa = Dyep Ixca ryxProblx|a] for a # B with r, = 0 y &N (x)
1

All relevant quantities can be computed via the flooding algorithm.

@ M. T. Wolfinger, W. A. Svrcek-Seiler, C. Flamm, I. L. Hofacker, and P. F. Stadler.

Efficient computation of RNA folding dynamics.
J. Phys. A: Math. Gen., 37(17):4731-4741, 2004.



Barrier tree kinetics - example
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Kinetic Folding Algorithm

Simulate folding kinetics by a rejection-less Monte-Carlo
type algorithm:

Generate all neighbors using the move-set %

Assign rates to each move, e.g.

AE P
P;zmin{l,exp(—ﬁ)} o®

[e] [e)
Select a move with probability proportional to its rate
Advance clock 1/3; P;. °5® —
@ C. Flamm, W. Fontana, |. Hofacker, and P. Schuster.
RNA folding kinetics at elementary step resolution. '2 °
RNA, 6:325-338, 2000.



Visualization
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Shneiderman’s mantra:

" Overview first, zoom and filter, details on demand "

m Start with an overview
m Let the user filter out interesting data
m Show details only on demand for different data

@ S. Potzsch, G. Scheuermann, M. T. Wolfinger, C. Flamm, and P. F. Stadler.

Visualization of lattice-based protein folding simulations.
In 10th International Conference on Information Visualization (/V06), 2006.



Overview first

@ PinFold Visuaization 1.1
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Zoom and filter

Energy map
Focus & context technique
Huge data sets, limited screen size

Details and overview in one window |




Details on demand
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Conclusion

m Barrier trees approximate the landscape topology and folding
kinetics.

m A heuristic approach allows to sample low-energy refolding paths
between different structures

m A macrostate approach of folding kinetics reduces simulation time
drastically.

m A tool for visualization of folding trajectories enables a thorough
investigation of folding kinetics simulations.

m This newly generated framework provides a powerful method for
further refinement of biopolymer folding landscapes.
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